Skip to main content

Mikrobiologie und Ökophysiologie des Mangan- und Eisenkreislaufs

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Eisen (Fe) ist mit etwa 0,2 bis 5% nach Aluminium (Al) das am häufigsten vorkommende Metall in zahlreichen Mineralien, Gesteinen und Oxiden der Pedosphäre. Mangan (Mn) stellt nach Fe mit etwa 0,1% das zweithäufigste Schwermetall in der oberen Erdrinde dar. Durch chemisch-biologische Verwitterung von Mineralien und Gesteinen werden Fe(II)- bzw. Mn(II)-Ionen in unmittelbarer Umgebung der Verwitterungsprozesse ausgeschieden und durch O2 zu weitgehend unlöslichen amorphen wasserreichen Hydroxiden (Ferrihydrit, Fe(OH)3) bzw. zu Oxiden (Braunsteinen, MnO2) und Mn(III,IV),Fe(III)-Mischoxiden (Konkretionen) oxidiert und akkumuliert. In Böden liegen beide Metalle infolgedessen überwiegend als freie, nicht silikatisch gebundene (Hydr)Oxide vor. In Tonböden kommt Fe zudem in zwei- und dreiwertiger Form, strukturell gebunden in Zwischenschichten bestimmter Phyllosilikate vor, darunter vor allem in Fe(III)-reichen Smectiten (Nontronit), Montmorilloniten, Illiten und Chloriten. Je nach Pedogenese sind Mn- und Fe-Verbindungen in den einzelnen Horizonten infolge mikrobieller Reduktions- und Oxidationsprozesse heterogen verteilt. Mikrobiologie und Verhalten von Mn und Fe sind relativ ähnlich, sodass nachfolgend hauptsächlich auf Fe eingegangen wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Amils R, Fernández-Remolar D, Gómez F, González-Toril E, Rodriguez N, Briones C et al. (2008). Subsurface geomicrobiology of the Iberian pyritic beld. In: Dion P, Nautiyal CE (Hrsg) Microbiology of extreme soils, Springer, Berlin Heidelberg, S 205–224

    Google Scholar 

  • Arnold RG, DiChristina TJ, Hofffmann MR (1986) Inhibitory studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 (Pseudomonas ferrireducens). Appl Environ Microbiol 52: 1281–289

    Google Scholar 

  • Arnold RG, DiChristina TJ, Hoffman MR (1988) Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol Bioeng 32: 1081–1096

    PubMed  CAS  Google Scholar 

  • Bauer I, Kappler A (2009) Rates and extent of reduction of Fe(III) compound and O2 by humic substances. Environ Sci Technol 43: 4902–4908

    PubMed  CAS  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice – conditions and management concepts. J Plant Nutr Soil Sci 168: 558–573

    CAS  Google Scholar 

  • Benz M, Brune A, Schink B (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch Microbiol 169: 159–165

    PubMed  CAS  Google Scholar 

  • Blöthe M, Akob DM, Kostka JE, Göschel K, Drake HL, Küsel K (2008) pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. Appl Environ Microbiol 74: 1019–1029

    PubMed  Google Scholar 

  • Bétrémieux R (1951) Etude expérimentale de l’évolution du fer et du manganèse dans les sols. Ann Agron A2: 194–297

    Google Scholar 

  • Boone DR, Liu Y, Zhao Z, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Appl Environ Microbiol 45: 441–448

    CAS  Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfurand iron-oxidizing bacteria. Appl Environ Microbiol 32: 567–571

    PubMed  CAS  Google Scholar 

  • Bühler I (1986) Einfluss der Glucose- und Mangandioxidkonzentration auf Intensität und Kinetik der bakteriellen Manganreduktion. Diplomarbeit, Institut für Bodenkunde und Standortlehre, Universität Hohenheim

    Google Scholar 

  • Bromfield SM (1954) Reduction of iron oxide by bacteria. J Soil Sci 5: 129–136

    Google Scholar 

  • Caccavo F, Coates JD, Rosello–Mora RA, Ludwig W, Schleifer KH, Lovley DR, Mclnerney MJ (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165: 370–376

    PubMed  CAS  Google Scholar 

  • Caccavo F, Schamberger PC, Keiding K, Nielsen PH (1997) Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(III) oxide. Appl Environ Microbiol 63: 3837–3843

    PubMed  CAS  Google Scholar 

  • Canstein H von, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74: 615–623

    Google Scholar 

  • Childers SE, Clufe S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416: 767–769

    PubMed  CAS  Google Scholar 

  • Clarke WA, Konhauser KO, Thomas JC, Bottrell SH (1997) Ferric hydroxyde and ferric hydroxysulfate precipitation by bacteria in an acid mine drainage lagoon. FEMS Microbiol Rev 20: 351–361

    CAS  Google Scholar 

  • Coates JD, Ellis DR, Lovley DR (1999) Geothrix fermentans gen. nov. sp. nov., an acetate-oxidzing Fe(III) reducer capable o growth via fermentation. Intern J Syst Bacteriol 49: 1615–1622

    CAS  Google Scholar 

  • Coupland K, Johnson DB (2007) Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidiphilic heterotrophic bacteria. FEMS Microbiol Lett 279: 30–35

    PubMed  Google Scholar 

  • Croal LR, Gralnick JA, Malasarn D, Newman DK (2004) The genetics of geochemistry. Annu Rev Genet 38: 175–202

    PubMed  CAS  Google Scholar 

  • Cummings DF, Caccavo F, Spring S, Rosenzweig RF (1999) Ferribacterium limneticum gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171: 183–188

    CAS  Google Scholar 

  • Das A, Caccavo F (2001) Adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to crystalline Fe(III) oxides. Curr Microbiol 42: 151–154

    PubMed  CAS  Google Scholar 

  • Dominik P, Pohl HN, Bousserrhine N, Berthelin J, Kaupenjohann M (2002) Limitations to the reductive dissolution of Al-substituted goethites by Clostridium butyricum. Soil Biol Biochem 34: 1147–1155

    Google Scholar 

  • Doong R, Schink B (2002) Cysteine-mediated reductive dissolution of poorly crystalline iron(III) oxides by Geobacter sulfurreducens. Environ Sci Technol 36: 2939–2945

    PubMed  CAS  Google Scholar 

  • Ehrlich HL (1996, 2002) Geomicrobiology, 3. bzw. 4. Aufl. Marcel Dekker, New York

    Google Scholar 

  • Finneran KT, Johnson CV, Lovley DR (2003) Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultative anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Intern J Syst Evol Microbiol 53: 669–673

    CAS  Google Scholar 

  • Fischer WR, Ottow JCG (1972) Abbau von Eisen(III)-Citrat in durchlüfteter, wässriger Lösung durch Bodenbakterien. Z Pflanzenernähr Bodenk 131: 131–135

    Google Scholar 

  • Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66: 2006–2011

    PubMed  CAS  Google Scholar 

  • Ghiorse WC (1984) Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol 38: 515–550

    PubMed  CAS  Google Scholar 

  • Glathe H, Ottow JCG (1972) Ökologische und ökophysiologische Aspekte zum Mechanismus der Eisenoxidation und Ockerbildung – Eine Übersicht. Zbl Bakt Abt II 127: 749–769

    CAS  Google Scholar 

  • Gonzalez-Gil G, Amonette JE, Romine MF, Gorby YA, Geesey GG (2005) Bioreduction of natural specular hematite under flow conditions. Geochim Cosmochim Acta 69: 1145–1155

    CAS  Google Scholar 

  • Grantham MC, Dove PM, DiChritina TJ (1997) Microbially catalyzed dissolution of iron and aluminium oxyhydroxide mineral surface coatings. Geochim Cosmochim Acta 61: 4467–4477

    CAS  Google Scholar 

  • Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Intern J Syst Bact 47: 505–509

    CAS  Google Scholar 

  • Hammann R, Mahr W, Kuntze H, Ottow, JCG (1977). Einfluss unterschiedlicher Dränfilter auf die Mikroflora und Verockerung. Z Kulturtechn Flurber 18: 40–55

    CAS  Google Scholar 

  • Hammann R, Ottow JCG (1974) Reductive dissolution of Fe2O3 by saccharolytic clostridia and Bacillus polymyxa under anaerobic conditions. Z Pflanzenernähr Bodenk 137: 108–115

    CAS  Google Scholar 

  • Hammann R, Ottow JCG (1976) Isolation and characterization of iron-reducing nitrogen-fixing saccharolytic clostridia from gley soils. Soil Biol Biochem 8: 357–364

    Google Scholar 

  • Hernandez ME, Newman DK (2001) Extracellular electron transfer. CMLS Cell Mol Life Sci 58: 1562–1571

    CAS  Google Scholar 

  • Hooper AB, Dispirito AA (1985) In bacteria which grow on simple reductants, generation of a proton gradient involves extracytoplasmic oxidation of substrate. Microbiol Rev 49: 140–157

    PubMed  CAS  Google Scholar 

  • Jaisi DP, Dong H, Liu C (2007) Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochim Cosmochim Acta 71: 1145–1158

    CAS  Google Scholar 

  • Johnson D (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27: 307–317

    CAS  Google Scholar 

  • Kappler A, Newman DK (2004) Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68: 1217–1226

    CAS  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100 o C by Pyrobaculum islandicum. Appl Environ Microbiol 66: 1050–1056

    PubMed  CAS  Google Scholar 

  • Kashefi K, Shelobolina ES, Elliott WC, Lovley DR (2008) Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor. Appl Environ Microbiol 74: 251–258

    PubMed  CAS  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl Environ Microbiol 67: 3275–3279

    PubMed  CAS  Google Scholar 

  • Köhler M, Völsgen F (1998) Geomikrobiologie. Grundlagen und Anwendungen, Wiley-VCH, Weinheim Berlin New York

    Google Scholar 

  • Kostka JE, Dalton DD, Skelton H, Dollhopf S, Stucki JW (2002) Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yield on the variety of oxidized iron forms. Appl Environ Microbiol 68: 6256–6262

    PubMed  CAS  Google Scholar 

  • Küsel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments: Isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of Glucose. Appl Environ Microbiol 65: 3633–3644

    PubMed  Google Scholar 

  • Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofolms. Appl Environ Microbiol 71: 4414–4426

    PubMed  CAS  Google Scholar 

  • Lin B, Hyacinthe C, Bonnville S, Braster M, van Cappellen P, Rölling WFM (2007) Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheld estuary, Northwest Europe. Environ Microbiol 9: 1956–1968

    PubMed  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27: 413–425

    Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55: 259–87

    PubMed  CAS  Google Scholar 

  • Lovley DR (1995) Microbial reduction of iron, manganese, and other metals. Adv Agron 54: 175–231

    CAS  Google Scholar 

  • Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20: 305–313

    CAS  Google Scholar 

  • Lovley DR, Fraga H, Blunt-Harris EL, Hayes JA, Philipps EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26: 152–157

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl Environ Microbiol 54: 1472–1480

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP, Lonerga DJ (1991) Enzymatic versus non-enzymatic mechanisms for Fe(III) reduction in aquatic sediments. Environ Sci Technol 25: 1062–1067

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP, Lonergan DJ, Widman PK (1995) Fe(III) and So reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61: 2132–2138

    PubMed  CAS  Google Scholar 

  • Magnuson TS, Hodges-Myerson AL, Lovley DR (2000) Characterization of a membrane-bound NADH-dependent Fe(III) reductase from the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens. FEMS Microbiol Lett 185: 205–211

    PubMed  CAS  Google Scholar 

  • Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71: 8634–8641

    PubMed  CAS  Google Scholar 

  • Mulder ED, Deinema MH (1992) The sheated bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH, Pfenning N, Holt JG (Hrsg) The prokaryotes, 2. Aufl. Springer, Berlin Heidelberg New York Tokyo S 2612–2624

    Google Scholar 

  • Munch JC, Hillebrand T, Ottow JCG (1978) Transformations in the Feo/Fed-ratio of pedogenic iron oxides affected by ironreducing bacteria. Can J Soil Sci 58: 475–486

    CAS  Google Scholar 

  • Munch JC, Ottow JCG (1977) Modelluntersuchungen zum Mechanismus der bakteriellen Eisenreduktion in hydromorphen Böden. Z Pflanzenernähr Bodenk 140: 549–562

    CAS  Google Scholar 

  • Munch JC, Ottow JCG (1980) Preferential reduction of amorphous to crystalline iron oxides by bacterial activity. Soil Sci 129: 15–21

    CAS  Google Scholar 

  • Munch JC, Ottow JCG (1982) Einfluss von Zellkontakt und Eisen(III)-Oxidform auf die bakterielle Eisenreduktion. Z Pflanzenernähr Bodenk 145: 66–77

    CAS  Google Scholar 

  • Munch JC, Ottow JCG (1983) Réduction bactérienne des oxides ferriques amorphes et cristallisés. Sci Sol 3–4: 205–215

    Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174: 3429–3438

    PubMed  CAS  Google Scholar 

  • Meyers CR, Myers JM (1993) Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol Lett 108: 15–22

    Google Scholar 

  • Myers CR, Myers JM (1997a) Outer membrane cytochromes of Shewanella putrefaciens MR-1: Spectral analysis and purification of the 83kDa c-type cytochrome. Biochim Biophys Acta 1326: 307–318

    CAS  Google Scholar 

  • Myers CR, Meyers JM (1997b) Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of Fe(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol 179: 1443–1455

    Google Scholar 

  • Myers JM, Myers CR (1998) Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1 and detection of omcA homologs in other strains of S. putrefaciens. Biochim Biophys Acta 1373: 237–251

    PubMed  CAS  Google Scholar 

  • Myers JM, Myers CR (2001) Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl Environ Microbiol 67: 260–269

    PubMed  CAS  Google Scholar 

  • Meyers CR, Meyers JM (2003) Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett Appl Microbiol 37: 254–258

    Google Scholar 

  • Nakajima A (2003) Accumulation of gold by microorganisms. World J Microbiol Biotechnol 19: 369–374

    CAS  Google Scholar 

  • Nevin KP, Lovley DR (2000) Lack of production of electronshuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microbiol 66: 2248–2251

    PubMed  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68: 2294–2299

    PubMed  CAS  Google Scholar 

  • Obuekwe CO, Westlake DWS, Cook FD (1981) Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. Can J Microbiol 27: 692–697

    PubMed  CAS  Google Scholar 

  • Ottow JCG (1969a) The distribution and differentiation of iron reducing bacteria in gley soils. Zbl Bakt Abt. II 123: 160–165

    Google Scholar 

  • Ottow JCG (1969b) Einfluss von Nitrat, Chlorat, Sulfat, Eisenoxidform und Wachstumsbedingungen auf das Ausmaß der bakteriellen Eisenreduktion. Z Pflanzenernähr Bodenk 124: 238–253

    CAS  Google Scholar 

  • Ottow JCG (1970a) Bacterial mechanism of gley formation in artificially submerged soil. Nature 225: 103

    CAS  Google Scholar 

  • Ottow JCG (1970b) Selection, characterization and iron-reducing capacity of nitrate reductaseless (nit-) mutants of ironreducing bacteria. Z Allg Mikrobiol 10: 55–62

    CAS  Google Scholar 

  • Ottow JCG (1971) Iron reduction and gley formation by nitrogen fixing iron-reducing clostridia. Oecologia 6: 160–175

    Google Scholar 

  • Ottow JCG (1981) Mechanisms of bacterial iron reduction in flooded soils. In: Institute of Soil Science, Academia Sinica (Hrsg) Proceedings of the Symposium on Paddy Soils. Science Press, Beijing, Springer Berlin Heidelberg, S 330–343

    Google Scholar 

  • Ottow JCG (1982) Bedeutung des Redoxpotentials für die Reduktion von Nitrat und Fe(III)-Oxiden in Böden. Z Pflanzenernähr Bodenk 145: 91–93

    CAS  Google Scholar 

  • Ottow JCG, Benckiser G, Watanabe I, Santiago S (1983) Multiple nutritional stress as the prerequisite for iron toxicity of wetland rice (Oryza sativa). Trop Agric (Trinidad) 60: 102–106

    CAS  Google Scholar 

  • Ottow JCG, Glathe H (1971) Isolation and identification of ironreducing bacteria from gley soils. Soil Biol Biochem 3: 43–55

    Google Scholar 

  • Ottow JCG, Glathe H (1973) Pedochemie und Pedomikrobiologie hydromorpher Böden: Merkmale, Voraussetzungen und Ursache der Eisenreduktion. Chem Erde 32: 1–44

    CAS  Google Scholar 

  • Ottow JCG, Ottow H (1970) Gibt es eine Korrelation zwischen der eisenreduzierenden und nitratreduzierenden Mikroflora des Bodens? Zbl Bakt Abt II 124: 314–318

    CAS  Google Scholar 

  • Ottow JCG, Weber J, Munch JC (1981) Effet de la taille des particules sur la réduction bactérienne des oxides de fer. Sci Sol 4: 305–314

    Google Scholar 

  • Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka JE (2003) Enumeration and characterization of Fe(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl Environ Microbiol 69: 7476–7479

    Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24: 29–90

    CAS  Google Scholar 

  • Ponnamperuma FN (1981) Some aspects of the physical-chemistry of paddy soils. In: Institute of Soil Science, Academia Sinica (Hrsg) Proceedings of Symposium on Paddy Soil. Science, Beiijng, Springer Berlin Heidelberg, S 59–94

    Google Scholar 

  • Ratering S, Schnell S (2001) Nitrate-dependent iron(II)-oxidation in paddy soils. Environ Microbiol 3: 100–109

    PubMed  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoli JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435: 1098–1101

    PubMed  CAS  Google Scholar 

  • Reith F, McPhail DC (2006) Effect of resident microbiota on the solubilisation of gold in soil from the Tomakin Park Gold Mine, New South Wales, Australia. Geochim Cosmochim Acta 70: 1421–1438

    CAS  Google Scholar 

  • Roberts JL (1947) Reduction of ferric hydroxide by strains of Bacillus polymyxa. Soil Sci 63: 135–140

    CAS  Google Scholar 

  • Roden EE, Zachara JM (1996) Microbial reduction of crystalline Fe(III) oxides: Influence of oxide surface area and potential for cell growth. Environ Sci Technol 30: 1618–1626

    CAS  Google Scholar 

  • Rossello-Mora RA, Ludwig W, Kämpfer P, Amann R, Schleifer KH (1995) Ferrimonas balearic gen. nov., a new marine facultative Fe(III)-reducing bacterium. System Appl Microbiol 18: 196–202

    Google Scholar 

  • Royer RA, Burgos WD, Fisher AS, Jeon BH, Unz RF, Dempsey BA (2002) Enhancement of hematite bioreduction by natural organich matter. Environ Sci Technol 36: 2897–2904

    PubMed  CAS  Google Scholar 

  • Scala DJ, Hacherl EL, Cowan R, Young LY, Kosson DS (2006) Characterization of Fe(III)-reducing enrichment cultures and isolation of Fe(III)-reducing bacteria from the Savannah River site, South Carolina. Res Microbiol 157: 772–783

    PubMed  CAS  Google Scholar 

  • Schröder I, Johnson E, de Vries S (2003) Microbial ferric iron reductases. FEMS Microbiol Rev 27: 427–447

    PubMed  Google Scholar 

  • Schwertmann U, Kodama H, Fischer WR (1986) Mutual interactions between organics and iron oxides. In: Huang PM, Schnitzer M (Hrsg) Interactions of soil minerals with natural organics and microbes. Soil Science Soc of America Special Publication nr. 17, Madison, Wisconsin, S 223–250

    Google Scholar 

  • Scott DT, McKnight DM, Blunt-Harris FL, Kolesar SE, Lovley DR (1998). Quinon moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms. Environ Sci Technol 32: 2984–2989

    CAS  Google Scholar 

  • Seeliger S, Cord-Ruwisch R, Schink B (1998) A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol 180: 3686–3691

    PubMed  CAS  Google Scholar 

  • Slobodkin A, Campbell B, Cary SC, Bonch-Osmolovskaya E, Jeanthon C (2001) Evidence of the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13o N (East Pacific Rise). FEMS Microbiol Ecol 36: 235–243

    PubMed  CAS  Google Scholar 

  • Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34: 181–186

    PubMed  CAS  Google Scholar 

  • Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62: 1458–1460

    PubMed  CAS  Google Scholar 

  • Straub KL, Buchholz-Cleven BEE (1998) Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Appl Environ Microbiol 64: 4846–4856

    PubMed  CAS  Google Scholar 

  • Takai Y, Kamura T (1966) The mechanisms of reduction in waterlogged paddy soil. Folia Microbiol 11: 304–313

    CAS  Google Scholar 

  • Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. Adv Microb Ecol 16: 41–84

    CAS  Google Scholar 

  • Tor JM, Lovley DR (2001) Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ Microbiol 3: 281–287

    PubMed  CAS  Google Scholar 

  • Treude N, Rosencrantz D, Liesack W, Schnell S (2003) Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol 44: 261–269

    PubMed  CAS  Google Scholar 

  • Urrutia MM, Roden EE, Zachara JM (1999) Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides. Environ Sci Technol 33: 4022–4028

    CAS  Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbial evidence for Fe(III) reduction on early Earth. Nature 395: 65–67

    PubMed  CAS  Google Scholar 

  • Watanabe I, Furusaka C (1980) Microbial ecology of flooded rice soils. Adv Microb Ecol 4: 125–167

    CAS  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006a) Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Rev Microbiol 4: 752–764

    CAS  Google Scholar 

  • Weber KA, Picardal FW, Roden EE (2001) Microbially catalyzed nitrate-dependent oxidation of biogenic soild-phase Fe(II) compounds. Environ Sci Technol 35: 1644–1650

    PubMed  CAS  Google Scholar 

  • Weber KA, Polock J, Cole KA, O’Oconnor SM, Achenbach LA, Coates JD (2006b) Anaerobic nitrate-dependent iron(II) biooxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Appl Environ Microbiol 72: 686–694

    CAS  Google Scholar 

  • Wolf M, Kappler A, Jiang J, Meckenstock RU (2009) Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. Environ Sci Technol 43: 5679–5685

    PubMed  CAS  Google Scholar 

  • Wu J, Roth CB, Low PF (1988) Biological reduction of structural iron in sodium nontronite. Soil Sci Soc Am J 52: 295–296

    CAS  Google Scholar 

  • Yamane I (1978) Electrochemical changes in rice soils. In: The International Rice Research Insitute (Hrsg) Soils and rice, Los Banos, Philippinen, S 381–420

    Google Scholar 

  • Yoshida T (1975) Microbial metabolism of flooded soils. In: Paul EA, Mclaren AD (Hrsg) Soil biochemistry, Vol 3, Marcel Dekker, New York, S 83–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Mikrobiologie und Ökophysiologie des Mangan- und Eisenkreislaufs. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_14

Download citation

Publish with us

Policies and ethics