Skip to main content

Mikrobiologie und Ökophysiologie des Stickstoffkreislaufs

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

  • 10k Accesses

Zusammenfassung

In Atmosphäre, Böden und Gewässern der Erde befinden sich ca. 4 × 1021 g N (= 4 × 1015 t N = 4 Pt N) im Umlauf, allerdings liegen mehr als 99% davon in Form von atmosphärischem N2 vor. Im N-Kreislauf unseres Planeten sind weniger als 0,1% des Gesamt-N-Gehalts organisch gebunden, im Wesentlichen in den terrestrischen Ökosystemen. In diesen Ökosystemen, einschließlich Pflanzen, Tieren und Mikroorganismen, sind global etwa 332–350 Pg N (1 Pg = 1015 g) enthalten. Sedimente, Steinkohle und Gesteine speichern zusätzlich noch ca. 2 × 1018 g N. In den terrestrischen Ökosystemen verteilen sich ungefähr 88–100 Pg N auf organisch gebundenen N in Ah- und Ap-Horizonten von Böden, ca. 2,0 Pg N auf die Streuauflagen (O-Horizonte), etwa 10–13 Pg N auf die pflanzliche und ca. 0,2 Pg N auf die tierische Biomasse. Etwa 2 Pg N befinden sich global in der mikrobiellen Biomasse von Böden (Batjes 1996). Die Mengen an tonmineralfixiertem NH4 +-N in Böden werden global auf 20 Pg N geschätzt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abou Seada MNI, Ottow JCG (1985) Effect of increasing oxygen concentration on total denitrification and nitrous oxide release from soil by different bacteria. Biol Fertil Soils 1: 31–38

    CAS  Google Scholar 

  • Abou Seada MNI, Ottow JCG (1988) Einfluss chemischer Bodeneigenschaften auf Ausmaß und Zusammensetzung der Denitrifikationsverluste dreier verschiedener Bakterien. Z Pflanzenernähr Bodenk 151: 109–115

    CAS  Google Scholar 

  • Albrecht A, Sich I, Russow R, Benckiser G, Ottow JCG (1997) Incomplete denitrification (NO and N2O) from nitrate by Streptomyces violaceoruber und S. nitrosporeus revealed by acetylene inhibition and 15 N gas chromatography-quadrupole mass spectrometry analyses. Naturwiss 84: 145–147

    CAS  Google Scholar 

  • Arp DJ, Bottomley PJ (2006) Nitrifiers: More than 100 years from isolation to genome sequences. Microbe 1: 229–233

    Google Scholar 

  • Aulakh MS, Doran JW, Mosier AR (1991) Field evaluation of four methods for measuring denitrification. Soil Sci Soc Am J 55: 1332–1338

    CAS  Google Scholar 

  • Aulakh MS, Rennie DA, Paul EA (1984) Acetylene and N-Serve effects upon N2O emissions from NH4 + and NO3 – treated soils under aerobic and anaerobic conditions. Soil Biol Biochem 16: 351–356

    CAS  Google Scholar 

  • Bach HJ, Hartmann A, Schloter M, Munch JC (2000) PCR primers and functional probes for amplification and detection of bacterial genes for extracellular peptidases in single strains and in soil. J Microbiol Meth 44: 173–182

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47: 151–163

    CAS  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4 + , and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53: 68–84

    PubMed  CAS  Google Scholar 

  • Beheydt D, Boeckx P, Ahmed HP, van Cleemput O (2008) N2O emission from conventional and minimum-tilled soils. Biol Fertil Soils 44: 863–874

    CAS  Google Scholar 

  • Benckiser G, Gaus G, Syring KM, Haider K, Sauerbeck D (1987) Denitrification losses from an inceptisol field treated with mineral fertilizer or sewage sludge. Z Pflanzenernähr Bodenk 150: 241–248

    CAS  Google Scholar 

  • Benbi DK, Richter J (2002) A critical review of some approaches to modelling nitrogen mineralization. Biol Fertil Soils 35: 168–83

    CAS  Google Scholar 

  • Benedetti A, Sebastiani G (1996) Determination of potentially mineralizable nitrogen in agricultural soil. Biol Fertil Soils 21: 114–120

    Google Scholar 

  • Bischopinck von KU, Ottow JCG (1985) Einfluss der Temperatur auf Kinetik und Gaszusammensetzung der Denitrifikation in einem sandigen Lehm. Mitteilgn Dtsch Bodenk Gesellsch 43: 537–542

    Google Scholar 

  • Bothe H, Jost G, Schloter M, Ward BB. Witzel KP (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24: 673–690

    PubMed  CAS  Google Scholar 

  • Bottomley PJ, Myrold, DD (2007). Biological N input. In: Paul EA (Hrsg) Soil microbiology, ecology, and biochemistry, Elsevier, Amsterdam, S 365–388

    Google Scholar 

  • Boyle-Yarwood SA, Bottomley PJ, Myrold DD (2008) Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of Red alder and Douglas fir in Oregon. Environ Microbiol 10: 2956–2965

    PubMed  CAS  Google Scholar 

  • Burford JR, Bremner JM (1975) Relationship between the denitrification capacities of soils and total water-soluble readily decomposable soil organic matter. Soil Biol Biochem 7: 389–394

    CAS  Google Scholar 

  • Burth I, Ottow JCG (1983) Influence of pH on the production of N2O and N2 by different denitrifying bacteria and Fusarium solani. Ecoll Bull (Stockholm) 35: 207–215

    CAS  Google Scholar 

  • Burton SAQ, Prosser JI (2001) Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl Environ Microbiol 67: 2952–2957

    PubMed  CAS  Google Scholar 

  • Cascitti KL, Ward BB (2001) Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Appl Environ Microbiol 67: 2213–2221

    Google Scholar 

  • Chalamet A (1985) Effects of environmental factors on denitrification. In: Golterman HL (Hrsg) Denitrification in the nitrogen cycle, Plenum, New York London, S 7–29

    Google Scholar 

  • Chen X, Boeckx P, Shen S, van Cleemput O (1999) Emissions of N2O from rye grass (Lolium perenne). Biol Fertil Soils 28: 392–396

    Google Scholar 

  • Chu H, Fujii T, Morimoto S, Lin X, Yagi K, Hu J, Zhang J (2007) Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl Environ Microbiol 75: 485–491

    Google Scholar 

  • Ciarlo E, Conti M, Bartoloni N, Rubio G (2008) Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilizer practices and soil moisture. Biol Fertil Soils 44: 991–995

    CAS  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: Microorganisms and mechanisms. Soil Biol Biochem 33: 853–866

    Google Scholar 

  • El Demerdash ME, Ottow JCG (1983) Einfluss einer hohen Nitratdüngung auf Kinetik und Gaszusammensetzung der Denitrifikation in unterschiedlichen Böden. Z Pflanzenernähr Bodenk 146: 138–150

    Google Scholar 

  • Emmerling C, Schloter M, Hartmann A, Kandeler E (2002) Functional diversity of soil organisms – a review of recent research activities in Germany. J Plant Nutr Soil Sci 165: 408–420

    CAS  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen, Kahnt J, Medema MH, Op den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10: 3164–3173

    PubMed  CAS  Google Scholar 

  • Ettwig KF, van Alen T, van Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75: 3656–3662

    PubMed  CAS  Google Scholar 

  • Fettweis U, Mittelstaedt W, Schimansky C, Führ F (2001) Lysimeter experiments on the translocation of the carbon-14-labelled nitrification inhibitor 3,4-dimethylpyrazolephosphate (DMPP) in a gleyic cambisol. Biol Fertil Soils 34: 126–130

    CAS  Google Scholar 

  • Fiencke C, Spieck E, Bock E (2005) Nitrifying bacteria. In: Werner D, Newton W (Hrsg) Nitrogen fixation in agriculture, forestry, ecology, and the environment, Vol 4, Springer Netherlands, S 255–276

    Google Scholar 

  • Freibauer A, Kaltschmitt M (2003) Controls and models for estimating direct nitrous oxide emissions from temperate and sub-boreal agricultural mineral soils in Europe. Geoderma 122: 1–23

    Google Scholar 

  • Fuka MM, Engel M, Haesler F, Welzl G, Munch JC, Schloter M (2008) Diversity of proteolytic community encoding for subtilisin in an arable field: Spatial and temporal variability. Biol Fertil Soils 45: 185–191

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG (2004) Nitrogen cycles: Post, present and future. Biogeochem 70: 153–226

    CAS  Google Scholar 

  • Garrido F, Henault C, Gaillard HG, Perez S, Germon JC (2002) N2O and NO emissions by agricultural soils with low hydraulic potentials. Soil Biol Biochem 34: 559–575

    CAS  Google Scholar 

  • Garrity GM (2005) Bergey’s Manual of Systematic Bacteriology. Vol 2, The proteobacteria, Part C, The Alpha-, Beta-, Delta- and Epsilonproteobacteria. Springer, New York

    Google Scholar 

  • Germon JC (1985) Microbiology of denitrification and other processes involving the reduction of oxygenated nitrogenous compounds. In: Golterman HL (Hrsg) Denitrification in the nitrogen cycle, Plenum, New York London, S 31–46

    Google Scholar 

  • Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE et al. (2006) Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecol Appl 16: 2091–2122

    PubMed  Google Scholar 

  • Hendriks J, Gohlke U, Sarate M (1998) From NO to OO: Nitric oxide and dioxygen in bacterial respiration. J Bioenergen Biomembranes 30: 15–24

    CAS  Google Scholar 

  • Inubushi K, Naganuma H, Kitahara S (1996) Contribution of denitrification, autotrophic and heterotrophic nitrification to nitrous oxide production in Andosols. Biol Fertil Soils 23: 292–298

    CAS  Google Scholar 

  • Jetten MSM (2001) New pathways for ammonia conversion in soil and aquatic systems. Plant Soil 230: 9–19

    CAS  Google Scholar 

  • Kandeler E, Deiglmayer K, Tsherko D, Bru D, Philippot L(2006) Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary succession of a glacier foreland. Appl Environ Microbiol 72: 5957–5962

    PubMed  CAS  Google Scholar 

  • Kaiser EA, Kohrs K, Kücke M, Schnug E, Munch JC, Heinemeyer O (1998) Nitrous oxide release from arable soil: Importance of perennial forage crops. Biol Fertil Soils 28: 36–43

    CAS  Google Scholar 

  • Karl DM, Michaels AF, Bergman B, Capone D, Carpeter E, Letelier R, Lipschultz F et al. (2002) Dinitrogen fixation in the world’s oceans. Biogeochem 57: 47–94

    Google Scholar 

  • Knowles R (1990) Acetylene inhibition technique: Development, advantages, and potential problems. In: Revsbech NP, Sörensen J (Hrsg) Denitrification in soil and sediment. Plenum, New York London, S 151–180

    Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaea. Nature 437: 543–546

    PubMed  Google Scholar 

  • Körner R, Benckiser G, Ottow JCG (1993) Quantifizierung der Lachgas(N2O)-Freisetzung aus Kläranlagen unterschiedlicher Verfahrensführung. Korresp Abwasser 40: 514–525

    Google Scholar 

  • Kowalchuk GA, Stienstra AW, Heilig GHJ, Stephen JR, Woldendorp JW (2000) Molecular analysis of ammonia-oxidizing bacteria in soil of successional grassland of the Drentsche A (The Netherlands). FEMS Microbiol Ecol 31: 207–215

    PubMed  CAS  Google Scholar 

  • Kubota Y, Takaya N, Shoun H (1999) Membrane-associated dissimilatory nitrite reductase of the denitrifying fungus Cylindrocarpon tonkinense. Arch Microbiol 171: 210–213

    CAS  Google Scholar 

  • Kumar U, Jain MC, Pathak H, Kumar S, Majumdar D (2000) Nitrous oxide emissions from different fertilizers and its mitigation by nitrification inhibitors in irrigated rice. Biol Fertil Soils 32: 474–478

    CAS  Google Scholar 

  • Laughlin RJ, Stevens RJ (2002) Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci Soc Am J 66: 1540–1548

    CAS  Google Scholar 

  • Laughlin RJ, Stevens RJ, Müller C, Watson CJ (2008) Evidence that fungi can oxidize NH4 + to NO3 – in a grassland soil. Eur J Soil Sci 59: 285–291

    CAS  Google Scholar 

  • Lehn-Reiser M, Benckiser G, Ottow JCG (1991) Mikrobielle Aktivität (Dimethylsulfoxid-Reduktaseaktivität, aktuelle und potenzielle Denitrifikationskapazität, BSB5) in der Dränzone landwirtschaftlich genutzter Böden im Wassereinzugsgebiet Süchteln. Mittlg Dtsch Bodenk Gesellsch 66: 555–558

    Google Scholar 

  • Leininger S, Ulrich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JL, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806–809

    Google Scholar 

  • Linn A, Ottow JCG, Benckiser G, Lorch HJ (1996) Quantifizierung der Lachgas(N2O)-Freisetzung aus dem Nitrifikationsund Denitrifikationsbecken einer kommunalen Kläranlage. Forum Städte-Hyg 47: 367–373

    CAS  Google Scholar 

  • Malinowski P, Ottow JCG (1991) Ecological conditions and physiological mechanism of N2O-formation from nitrite by Fusarium solani. In: Berthelin J (Hrsg) Diversity of environmental biogeochemistry, Elsevier, Amsterdam Oxford Tokyo, S 287–294

    Google Scholar 

  • Marsch KL, Sims GK, Mulvaney RL (2005) Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14 C- and 15 N-labeled urea added to soil. Biol Fertil Soils 42: 137–145

    Google Scholar 

  • McCarty GW (1999) Modes of action of nitrification inhibitors. Biol Fertil Soils 29: 1–9

    CAS  Google Scholar 

  • McCarty GW, Bremner JM (1989) Inhibition of nitrification in soil by heterocyclic nitrogen compounds. Biol Fertil Soils 8: 204–211

    CAS  Google Scholar 

  • Mendum TA, Hirch PR (2002) Changes in the population structure of the β-group of autotrophic ammonia oxidizing bacteria in arable soils in response to agricultural practice. Soil Biol Biochem 34: 1479–1485

    CAS  Google Scholar 

  • Müller C (2000) Modelling soil-biosphere interactions, CABI, New York

    Google Scholar 

  • Müller C (2003) Plants affect the in situ N2O-emissions of a temperate grassland ecosystem. J Plant Nutr Soil Sci 166: 771–773

    Google Scholar 

  • Müller C, Kammann C, Ottow JCG, Jäger HJ (2003) Nitrous oxide emission from frozen grassland soil and during thawing periods. J Plant Nutr Soil Sci 166: 46–53

    Google Scholar 

  • Müller C, Martin M, Stevens RJ, Laughlin RJ, Kammann C, Ottow JCG, Jäger HJ (2002a) Processes leading to N2O emissions in grassland soil during freezing and thawing. Soil Biol Biochem 34: 1325–1331

    Google Scholar 

  • Müller C, Stevens RJ, Laughlin RJ, Azam F, Ottow JCG (2002b) The nitrification inhibitor DMPP has no effect on denitrifying enzyme activity. Soil Biol Biochem 34: 1825–1827

    Google Scholar 

  • Müller C, Stevens RJ, Laughlin RJ, Jäger HJ (2004) Microbial processes and the site of N2O production in a temperate grassland soil. Soil Biol Biochem 36: 453–461

    Google Scholar 

  • Munch JC, Ottow JCG (1986) Nature des produits gazeux formes dans les sols a partir de différentes microflores denitrifiantes. Sci Sol 24: 337–350

    Google Scholar 

  • Myrold DD (1990) Measuring denitrification in soil using 15 N techniques. In: Revsbech NP, Sörensen J (Hrsg) Denitrification in soil and sediment, Plenum, New York London, S 181–211

    Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer, Heidelberg

    Google Scholar 

  • Nieder R, Schollmayer G, Richter J (1989) Denitrification in the rooting zone of cropped soils with regard to methodology and climate: A review. Biol Fertil Soils 8: 219–226

    CAS  Google Scholar 

  • Nicol GW, Leihninger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing Archaea and Bacteria Environ Microbiol 10: 2966–2978

    PubMed  CAS  Google Scholar 

  • Niftrik LA van, Fuerst JA, Damsté JSS, Kuenen JG, Jetten MSM, Strous M (2004) The anammoxosome. An intracytoplasmic compartiment in anammox bacteria. FEMS Microbiol Lett 233: 7–13

    PubMed  Google Scholar 

  • Nugroho RA, Röhling WFM, Laverman AM, Zoomer HR, Verhoef HA (2005) Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. FEMS Microbiol Ecol 53: 473–481

    PubMed  CAS  Google Scholar 

  • Oishi K, Kusuda T (2003) Characteristics and distribution of nitrous oxide-producing denitrifying fungi in natural environments. J Water Environ Technol 1: 67–72

    Google Scholar 

  • Ottow JCG, Benckiser G (1994) Effect of ecological conditions on total denitrification and N2O release from soils. Nova Acta Leopoldina 288: 251–262

    Google Scholar 

  • Ottow JCG, Benckiser G, Lorch HJ (1996) In situ quantification of total denitrification losses by acetylen-inhibition technique. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (Hrsg) Methods in soil biology, Springer, Heidelberg, S 155–161

    Google Scholar 

  • Ottow JCG, Burth-Gebauer I, El-Demerdash ME (1985) Influence of pH and partial oxygen pressure on the N2O-N to N2 ratio of denitrification. In: Golterman HL (Hrsg) Denitrification in the nitrogen cycle, Plenum, New York London, S 101–120

    Google Scholar 

  • Ottow, JCG, Fabig W (1985) Influence of oxygen aeration on denitrification and redox level in different bacterial batch cultures. In: Caldwell DE, Brierley JA, Brierley CL (Hrsg) Planetary ecology, Van Nostrand Reinhold, New York, S 427–441

    Google Scholar 

  • Parkin TB (1987) Soil microsites as a source of denitrification variability. Soil Sci Soc Am J 51: 1194–1199

    CAS  Google Scholar 

  • Payne WJ (1985) Diversity of denitrifiers and their enzymes. In: Golterman HL (Hrsg) Denitrification in the nitrogen cycle. Plenum, New York London, S 47–65

    Google Scholar 

  • Philippot L (2002) Denitrifying genes in bacterial and archaeal genomes. Biochim Biophys Acta 1577: 355–376

    PubMed  CAS  Google Scholar 

  • Philippot L, Cuhel J, Saby NPA, Cheneby D, Chronáková, Bru D, Arrouays D et al. (2009) Mapping field-scale spatial pattern of size and activity of the denitrifier community. Environ Microbiol 11: 1518–1526

    PubMed  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of Archaea and Bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10: 2931–2941

    PubMed  CAS  Google Scholar 

  • Purkhold U, Pommerening-Roser A, Juretschko S, Schmidt MC, Koops HP,Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl Environ Microbiol 66: 5368–5382

    PubMed  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwing KF, Rijpstra WIC, Schouten S et al. (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440: 918–921

    PubMed  CAS  Google Scholar 

  • Rajbanshi SS, Benckiser G, Ottow JCG (1992a) Mineralization kinetics and utilization as a N source of dicyandiamid in soil. Naturwiss 79: 26–27

    CAS  Google Scholar 

  • Rajbanshi SS, Benckiser G, Ottow JCG (1992b) Effects of concentration, incubation temperature, and repeated applications on degradation kinetics of dicyandiamide (DCD) in model experiments with a silt loam soil. Biol Fertil Soils 13: 61–64

    CAS  Google Scholar 

  • Rheinbaben W von (1990) Nitrogen losses from agricultural soils through denitrification – a critical evaluation. Z Pflanzenernähr Bodenk 153: 157–166

    Google Scholar 

  • Ribeira HM, Fangueiro D, Alvez F, Ventura R, Coelho D, Vasconcelos E, Cunha-Queda C et al. (2010) Nitrogen mineralization from an organically managed soil and nitrogen accumulation in lettuce. Z Pflanzenernähr Bodenk 173: 260–267

    Google Scholar 

  • Robertson GP, Groffman PM (2007) Nitrogen transformations. In: Paul EA (Hrsg) Soil microbiology, ecology, and biochemistry, 3. Aufl. Academic Press, Amsterdam Boston Heidelberg London u. a., S 341–363

    Google Scholar 

  • Röver, M, Heinemeyer O, Kaiser EA (1998) Microbial induced nitrous oxide emissions from an arable soil during winter. Soil Biol Biochem 30: 1859–1865

    Google Scholar 

  • Saggar S, Tate KR, Giltrap DL, Singh J (2008) Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: A review. Plant Soil 309: 25–42

    CAS  Google Scholar 

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S et al. (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11: 446–456

    PubMed  CAS  Google Scholar 

  • Schmid MC, Maas, B, Dapena A, van de Pas-Schoonen K, van de Vossenberg J, Kartal B, van Niftrik L, et al. (2005) Biomarkers for in situ detection of anaerobic ammoniumoxidizing (Anammox) bacteria. Appl Environ Microbiol 71: 1766–1684

    Google Scholar 

  • Shoun H, Kim DH, Uchiyama H, Sugiyama J (1992) Denitrifying fungi. FEMS Microbiol Lett 94: 277–282

    CAS  Google Scholar 

  • Simarmata T, Benckiser G, Ottow JCG (1993) Effect of an increasing carbon:nitrate-N ratio on the reliability of acetylene in blocking the N2O-reductase activity of denitrifying bacteria in soil. Biol Fertil Soils 15: 107–112

    Google Scholar 

  • Spanning RJM van, Delgado MJ, Richardson DJ (2005). The nitrogen cycle: Denitrification and its relationship to N2-fixation. In: Werner D, Newton WE (Hrsg) Nitrogen fixation in agriculture, forestry, ecology, and the environment, Springer Dordrecht, Netherlands, S 277–342

    Google Scholar 

  • Stanford G, Smith SJ (1972) Nitrogen mineralization potentials of soils. Soil Sci Soc Am Proc 36: 465–472

    CAS  Google Scholar 

  • Starkenburg SR, Arp DJ, Bottomley PJ (2008) Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. Environ Microbiol 10: 3036–3042

    PubMed  CAS  Google Scholar 

  • Schwarz J, Kapp M, Benckiser G, Ottow JCG (1994) Evaluation of denitrification losses by the acetylene inhibition technique in a permanent ryegrass field (Lolium perenne L.) fertilized with animal slurry or ammonium nitrate. Biol Fertil Soils 18: 327–333

    CAS  Google Scholar 

  • Stevens RJ, Laughlin RJ, Burns LC, Arah JRM, Hood RC (1997) Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol Biochem 29:139–151

    CAS  Google Scholar 

  • Stouthamer AH, Boogerd FC, van Verseveld HW (1982) The bioenergetics of denitrification. Antonie van Leeuwenhoek 48: 545–553

    PubMed  CAS  Google Scholar 

  • Strohm TO, Griffin B, Zumft WG, Schink B (2008) Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol 73: 1420–1424

    Google Scholar 

  • Strous M, Jetten, MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58: 99–117

    PubMed  CAS  Google Scholar 

  • Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65: 3248–3250

    PubMed  CAS  Google Scholar 

  • Sümer E, Benckiser G, Ottow JCG (1996) Lachgas(N2O)-Freisetzung aus Belebungsbecken von Kläranlagen in Abhängigkeit von den Abwassereigenschaften. In: Lemmer H, Griebe T, Flemming HC (Hrsg) Mikrobielle Ökologie des Abwassers, Springer Heidelberg, S 193–204

    Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68: 1312–1318

    PubMed  CAS  Google Scholar 

  • Verma A, Tyagi L, Yadav S, Singh SN (2006) Temporal changes in N2O efflux from cropped and fallow agricultural fields. Agric Ecosyst Environ 116: 209–215

    CAS  Google Scholar 

  • Weiske A, Benckiser G, Herbert T, Ottow JCG (2001a) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils 34: 109–117

    CAS  Google Scholar 

  • Weiske A, Benckiser G, Ottow JCG (2001b) Effect of the new nitrification inhibitor DMPPin comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3 years of repeated applications in field experiments. Nutr Cycl Agroecosyst 60: 57–64

    CAS  Google Scholar 

  • Wenzhöfer F, Kriszt B, Benckiser G, Ottow JCG (1997) Lachgas(N2O)-Freisetzung durch Streptomyces nitrosporeus in einem sandigen Lehmboden in Abhängigkeit von pO2, pH und Angebot an leicht mineralisierbarem Kohlenstoff. Z Pflanzenernähr Bodenk 160: 201–208

    Google Scholar 

  • Wrage N, Velthof GL, Laanbroek HJ, Oenema O (2004) Nitrous oxide production in grassland soils: Assessing the contribution of nitrifier denitrification. Soil Biol Biochem 36: 229–236

    CAS  Google Scholar 

  • Yoshinari T (1985) Emissions of N2O from various environments: The use of stable isotope composition of N2O as tracer for studies of N2O biogeochemical cycling. In: Revsbech NP, Sörensen J (Hrsgs) Denitrification in soil and sediment, Plenum, New York London, S 129–150

    Google Scholar 

  • Zou J, Huang Y, Sun W, Zheng X, Wang Y (2005) Contribution of plants to N2O emissions in soil-winter wheat ecosystems: Pot and field experiments. Plant Soil 269: 205–211

    CAS  Google Scholar 

  • Zerulla W, Barth T, Dressel J, Erhardt K, Horchler von Locquenghien K, Pasda G, Rädle M, Wissemeier A (2001) 3,4-Dimethylpyrazole phosphate (DMPP) – a new nitrification inhibitor for agriculture and horticulture: An introduction. Biol Fertil Soils 34: 79–84

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Mikrobiologie und Ökophysiologie des Stickstoffkreislaufs. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_12

Download citation

Publish with us

Policies and ethics