Skip to main content

Biochemie, Eigenschaften und Funktionen des Humuskörpers

  • Chapter
  • 10k Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

In den globalen terrestrischen Ökosystemen (innerhalb der oberen 2 m) bildet Humus (lat. Erdboden) mit etwa 75% entsprechend ca. 1000–2300 Gt C (1 Gt = 1012 kg) die größte Kohlenstoffsenke innerhalb des Gesamtkohlenstoffvorrates auf den Kontinenten (Abb. 10.1, Kap. 10). Böden bilden infolgedessen eine gewaltige Reserve an potenziell mineralisierbaren C-, N-, P- und S-Verbindungen, an essenziellen Nährstoffen (K, Mg, Ca, Fe, Mn) und an Mikronährstoffen. Nach dem heutigen (vorläufigen) Erkenntnisstand nimmt der C-Gehalt von Böden global im Schnitt mit etwa 1,4 ± 0,7 Gt C jährlich zu, wobei allerdings die tropischen Standorte eher als C-Quellen (CO2-Verluste durch Landnutzungsänderungen, Brandrodungen, etc.), jene der gemäßigten und borealen Klimabreiten hauptsächlich als C-Senken funktionieren. Im Unterboden unterhalb der ersten 2 m befinden sich schätzungsweise noch 800 bis 900 Gt an C. Höchstens 25% des terrestrischen Kohlenstoffes befinden sich in der oberirdischen lebenden Biomasse aus Pflanzen und Tieren. Noch geringer ist der Corg-Anteil im Edaphon. Schätzungsweise 0,2–5% des terrestrischen C-Gehaltes sind in der mikrobiellen Biomasse und in der Bodenfauna festgelegt. Dieser Pool besitzt allerdings relativ hohe Umsatzraten und kann infolgedessen als aktiv bezeichnet werden (Kap. 2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Albers CN, Banta GT, Jacobsen OS, Hansen PE (2008) Characterization and structural modelling of humic substances in field soil displaying significant differences from previously proposed structures. Eur J Soil Sci 59: 693–705

    Article  CAS  Google Scholar 

  • Allison SD (2006) Brown ground: A soil carbon analogue for the green world hypothesis. Am Nat 167: 619–627

    Article  PubMed  Google Scholar 

  • Amelung W (2003) Nitrogen biomarkers and their fate in soils. J Plant Nutr Soil Sci 166: 677–686

    Article  CAS  Google Scholar 

  • Amelung W, Xhang X (2001) Determination of amino acids enantiomers in soils. Soil Biol Biochem 33: 553–562

    Article  CAS  Google Scholar 

  • Beyer L, Blume HP, Köbbemann C (1999) Colluvisols under cultivation in Schleswig-Holstein. 3. Soil organic matter transformation after translocation. J Plant Nutr Soil Sci 162: 61–69

    Article  CAS  Google Scholar 

  • Blume HP, Fränzle O, Hörmann G, Irmler U, Kluge W, Schleuß U, Schrautzer J (2008) Ecological setting of the study area. In: Fränzle O, Kappen L, Blume HP, Dierssen K (Hrsg) Ecosystem organization of a complex landscape. Ecol Stud 202: 29–57

    Google Scholar 

  • Bremner JM (1967) Nitrogenous compounds in soil. In: McLean AD, Peterson GH (Hrsg) Soil biochemistry, Marcel Dekker, New York, S 19–66

    Google Scholar 

  • Cadish G, Giller K (2001) Soil organic matter management: The role of residue quality in C sequestration and N supply. In: Rees RM, Ball BC, Campbell CD, Watson CA (Hrsg) Sustainable management of soil organic matter. CAB International, Wellington, S 97–111

    Chapter  Google Scholar 

  • Cervantes FJ, Dijksma W, Duong-Dac T, Ivanova A, Lettinga G, Field JA (2001) Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 67: 4471–4478

    Article  PubMed  CAS  Google Scholar 

  • Coates JD, Cole KA, Chakraborty R, O’Connor SM, Achenbach LA (2002) Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl Environ Microbiol 68: 2445–2452

    Article  PubMed  CAS  Google Scholar 

  • Conte P, A Piccolo (1999) High pressure size exclusion chromatography (HPSEC) of humic substances. Molecular sizes, analytical parameters, and columns performance. Chemosphere 38: 517–528

    Article  PubMed  CAS  Google Scholar 

  • Clapp CE, Hayes MHB (1999) Sizes and shapes of humic substances. Soil Sci 164: 777–789

    Article  CAS  Google Scholar 

  • Durska G, Kaszubiak H (1980) Occurrence of α,ε-diaminopimelic acid in soil I, II, III. Pol Ecol Stud 6: 189–193, 195–199, 201–206

    Google Scholar 

  • Durska G, Kaszubiak H (1983) Occurrence of bound muramic acid and α,ε-diaminopimelic acid in soil and comparison of their contents with bacterial biomass. Acta Microbiol Pol 32: 263–275

    Google Scholar 

  • Eckmeier E, Gerlach R, Gehrt E, Schmidt MWI (2007) Pedogenesis of Chernozems in Central Europe – A review. Geoderma 139: 288–299

    Article  CAS  Google Scholar 

  • Eckschmitt K, Liu M, Vetter S, Fox O, Wolters V (2005) Strategies used by soil biota to overcome soil organic matter stability – Why is dead organic matter left over in soil? Geoderma 128: 167–176

    Article  Google Scholar 

  • Flaig W, Beutelspacher H, Rietz E (1975) Chemical composition and physical properties of humic substances. In: Gieseking JE (Hrsg) Soil components, Vol I, Organic components, Springer, Heidelberg, S 7–178

    Google Scholar 

  • Ghosh K, Schnitzer M (1980) Macromolecular structures of humic substances. Soil Sci 129: 266–276

    Article  CAS  Google Scholar 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic bacteria. Annu Rev Microbiol 56: 345–369

    Article  PubMed  CAS  Google Scholar 

  • Grant WD, West AW (1986) Measurement of ergosterol, diaminopimelic acid and glucose amine in soil: Evaluation and indicators of microbial biomass. J. Microbiol Meth 6: 47–53

    Article  CAS  Google Scholar 

  • Haile-Mariam S, Collins HP, Wright S, Paul EA (2008) Fractionation of long-term laboratory incubation to measure soil organic matter dynamics. Soil Sci Soc Am J 72: 370–375

    Article  CAS  Google Scholar 

  • Hatcher PG, Dria KJ, Kim S, Frazier SW (2001) Modern analytical studies of humic substances. Soil Sci 166: 770–794

    Article  CAS  Google Scholar 

  • Hayes MHB (1984) Structures of humic substances. In: Organic matter and rice, International Rice Research Institute, Los Banos, Philippines, S 93–115

    Google Scholar 

  • Hayes MHB, Clapp CC (2001) Humic substances: Considerations of composition, aspects of structure, and environmental influences. Soil Sci 166: 723–737

    Article  CAS  Google Scholar 

  • Kelleher BP, Simpson AJ (2006) Humic substances in soils: Are they really chemically distinct? Environ Sci Technol 40: 4605–4611

    Article  PubMed  CAS  Google Scholar 

  • Kelleher BP, Simpson MJ, Simpson AJ (2006) Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy. Geochim Cosmochim Acta 70: 4080–4094

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34: 139–162

    Article  Google Scholar 

  • Kögel-Knabner I (2006) Chemical structure of organic N and organic P in soil: In: Nannipieri P, Smalla K (Hrsg) Nucleic acids and proteins in soil, Springer, Berlin Heidelberg, S 23–48

    Chapter  Google Scholar 

  • Kögel-Knabner I, Eckschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, von Lützow M (2008) An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J. Plant Nutr Soil Scie 171: 5–13

    Article  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilization of soil organic matter for modelling carbon turnover. Funct Plant Biol 30: 207–222

    Article  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Philips EJP, Woodward JC (1986) Humic substances as electron acceptors for microbial respiration. Nature 382: 445–448

    Article  Google Scholar 

  • Lovley DR, Frage JL, Blunt-Harris EL, Hayes LA, Philips EJP, Jones JD (1998) Humic substances as a mediator for microbially catalysed metal reduction. Acta Hydrochim Hydrobiol 26: 152–157

    Article  CAS  Google Scholar 

  • Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL (1999) Humics as electron donor for anaerobic respiration. Environ Microbiol 1: 89–98

    Article  PubMed  CAS  Google Scholar 

  • Lützow von M, Kögel-Knabner I, Eckschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57: 426–445

    Article  Google Scholar 

  • Lützow von M, Kögel-Knabner I, Matzner BLE, Flessa H, Eckschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. J Plant Nutr Soil Sci 171: 111–124

    Article  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleizner G, Gude A, Grootes PM, Hamer U et al. (2008) How relevant is recalcitrance for the stabilization of organic matter? J Plant Nutr Soil Sci 171: 91–110

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34: 1527–1536

    Article  CAS  Google Scholar 

  • O’Dowd RW, Parson R, Hopkins DW (1997) Soil respiration induced by the D- and L-isomers of a range of amino acids. Soil Biol Biochem 29: 1665–1671

    Article  Google Scholar 

  • Ottow JCG (1978) Chemie und Biochemie des Humuskörpers unserer Böden. Naturwiss 55: 413–423

    Article  Google Scholar 

  • Ottow JCG (1982) Pestizide – Belastbarkeit, Selbstreinigungsvermögen und Fruchtbarkeit von Böden. Landwirtsch Forsch 35: 167–179

    Google Scholar 

  • Ottow JCG (1985) Einfluss von Pflanzenschutzmitteln auf die Mikroflora von Böden. Naturwiss Rundsch 38: 181–189

    Google Scholar 

  • Ottow, JCG (1997) Abbaukinetik und Persistenz von Fremdstoffen in Böden. In: Ottow JCG und Bidlingmaier W (Hrsg) Umweltbiotechnologie, Fischer Stuttgart, S 97–138

    Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166: 810–832

    Article  CAS  Google Scholar 

  • Pollock GE, Cheng CN, Croning SE (1977) Determination of the D and L isomers of some protein amino acids present in soils. Anal Chem 49: 1–7

    Article  Google Scholar 

  • Rice JA (2001) Humin. Soil Sci 166: 848–857

    Article  CAS  Google Scholar 

  • Schulten HR, Leinweber P (2000) New insights into organicmineral particles: Composition, properties and models of molecular structure. Biol Fertil Soils 30: 399–432

    Article  CAS  Google Scholar 

  • Schulten HR, Schnitzer M (1995) Three-dimensional models for humic acids and soil organic matter. Naturwiss 82: 487–498

    Article  CAS  Google Scholar 

  • Schulten HR, Schnitzer M (1997) Chemical model structures for soil organic matter and soils. Soil Sci 162: 115–130

    Article  CAS  Google Scholar 

  • Schulten HR, Schnitzer M (1998) The chemistry of soil organic nitrogen: A review. Biol Fertil Soils 26: 1–15

    Article  CAS  Google Scholar 

  • Schulten HR, Sorge-Lewin C, Schnitzer M (1997) Structure of unknown soil nitrogen investigated by analytical pyrolysis. Biol Fertil Soils 24: 249–254

    Article  CAS  Google Scholar 

  • Scot DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinones moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms. Environ Sci Technol 32: 2984–2989

    Article  Google Scholar 

  • Simpson AJ, Simpson MJ, Schmith E, Kelleher BP (2007) Microbially derived inputs to soil organic matter: Are current estimates too low? Environ Sci Technol 41: 8070–8076

    Article  PubMed  CAS  Google Scholar 

  • Spiteller M (1985) Beiträge zur Struktur und Dynamik von Huminstoffen. Gött Bodenk Ber 84: 1–250

    Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: Genesis, composition, reactions, 2. Aufl. John Wiley & Sons, New York

    Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: The new view. Environ Sci Technol 39: 9009–9015

    Article  PubMed  CAS  Google Scholar 

  • Swift RS (1999) Macromolecular properties of soil humic substances: Fact, Fiction, and opinion. Soil Sci 164: 790–802

    Article  CAS  Google Scholar 

  • Tan KH (2003) Humic matter in soil and environment, Marcel Dekker, New York

    Book  Google Scholar 

  • Turick CE, Tisa LS, Caccavo F (2002) Melanin production and use as a soluble electron shuttle for Fe(III)oxide reduction and as terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68: 2436–2444

    Article  PubMed  CAS  Google Scholar 

  • Vollmer W, Joris B, Charlier D, Foster S (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32: 259–286

    Article  PubMed  CAS  Google Scholar 

  • Young CC, Chen LF (1997) Polyamines in humic acid and their effect on radical growth of lettuce seedlings. Plant Soil 195: 143–149

    Article  CAS  Google Scholar 

  • Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano TM, Miltner A, Schroth G (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79: 117–161

    Article  CAS  Google Scholar 

  • Ziechmann W (1996) Huminstoffe und ihre Wirkungen, Spektrum Akad Verlag, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Biochemie, Eigenschaften und Funktionen des Humuskörpers. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_11

Download citation

Publish with us

Policies and ethics