Skip to main content

Next Challenges

  • Chapter
  • First Online:
Questions of Modern Cosmology

Abstract

Previous chapters have offered a view of the status of several lines of research of interest for current cosmology, covering observational aspects and their theoretical interpretation(s) and focusing on the wealth of information they provide for our comprehension of the properties of the Universe. It is remarkable that, in spite of the huge and high quality developments achieved during the last decades, many important questions linked to both fundamental physics and cosmology are still open. As often occurs in science and as pointed out in the contributions of previous chapters, recent achievements and discoveries give satisfactory answers to some problems, but, at the same time, pose new crucial questions which have deep implications for our view of the cosmos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abazajian, K., Dodelson, S.: Neutrino mass and dark energy from weak lensing. Phys. Rev. Lett. 91, 041301 (2003)

    Article  ADS  Google Scholar 

  2. Abbott, L.F., Wise, M.B.: Constraints on generalized inflationary cosmologies. Nucl. Phys. B 244, 541–548 (1984)

    Article  ADS  Google Scholar 

  3. Albrecht, A., et al.: Causality, randomness, and the microwave background. Phys. Rev. Lett. 76, 1413 (1996)

    Article  ADS  Google Scholar 

  4. Alcock, C., et al.: Possible gravitational microlensing of a star in the large magellanic cloud. Nature 365, 621 (1993)

    Article  ADS  Google Scholar 

  5. Arnaboldi, M., et al.: VST: VLT survey telescope. The Messenger 93, 30 (1998)

    ADS  Google Scholar 

  6. Astronomy and astrophysics survey committee, commission on physical sciences, mathematics, and applications, national research council http://www.nap.edu/catalog.php?record id=9839

  7. Baade, D., et al.: The wide field imager at the 2.2-m MPG/ESO telescope:First views with a 67-million-facette eye. The Messenger 95, 14 (1999)

    ADS  Google Scholar 

  8. Ball, N.M., et al.: Galaxy types in the sloan digital sky survey using supervised artificial neural networks. Mon. Not. R. Astron. Soc. 348, 1038 (2004)

    Article  ADS  Google Scholar 

  9. Baltay, C., et al.: The QUEST large area CCD camera. Pub. Astron. Soc. Pacific 119, 1278 (2007)

    Article  ADS  Google Scholar 

  10. Banday, A.J., Zaroubi, S., Bartelmann, M.: Mining the sky. Springer, Berlin (2001)

    Book  Google Scholar 

  11. Bardeen, J.M., Steinhardt, P.J., Turner, M.S.: Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D8, 679–693 (1983)

    ADS  Google Scholar 

  12. Beck, R.: Measurements of cosmic magnetism with LOFAR and SKA. Adv. Radio Sci. 5, 399 (2007)

    Article  ADS  Google Scholar 

  13. Bennett, C.L., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: Peliminary maps and basic results. Astrophys. J. Suppl. 148, 1–27 (2003)

    Article  ADS  Google Scholar 

  14. Benoit, A., Caussignac, M., Pujol, S.: New type of dilution refrigerator and space applications. Physica B97, 48 (1994)

    ADS  Google Scholar 

  15. Berg, J., et al.: Combined analysis of weak lensing and X-ray blind surveys. Mon. Not. R. Astron. Soc. (in press) [arXiv:0712.3293]

    Google Scholar 

  16. Bergstrom, L., et al.: Clumpy neutralino dark matter. Phys. Rev. D59, 043506 (1999)

    ADS  Google Scholar 

  17. Bertin, E., Arnout, S.: SExtractor: Software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393 (1996)

    Article  ADS  Google Scholar 

  18. Bock, J.J., et al.: A novel bolometer for infrared and millimeter-wave astrophysics. Space Sci. Rev. 74, 229–235 (1995)

    Article  ADS  Google Scholar 

  19. Bock, J., et al.: Task force on cosmic microwave background research (2006) [astro-ph/0604101v1]

    Google Scholar 

  20. BPol collaboration (2007); http://www.b-pol.org/index.php 727–737 (2007)

  21. Branchesi, M., et al.: High redshift X-ray galaxy clusters. II. The L X T relationship revisited. Astron. Astrophys. 472, 739–748 (2007)

    Article  ADS  Google Scholar 

  22. Branchesi, M., et al.: High redshift X-ray galaxy clusters. I. The impact of point sources on the cluster properties. Astron. Astrophys. 472 (2007)

    Google Scholar 

  23. Brunner, R.J., Djorgovski, S.G., Szalay, A.S.: Virtual observatories of the future. ASP Conf. Ser. 225 (2001)

    Google Scholar 

  24. Capaccioli, M.: Astronomy with Schmidt-type telescopes. LXXVIII IAU Colloquium, Reidel, Dordrecht (1983)

    Google Scholar 

  25. Cavuoti, S.: Classification of AGN using support vector machines. PhD thesis, University of Napoli Federico II (2007)

    Google Scholar 

  26. Charbonneau, D., et al.: Detection of planetary transits across a sun-like star. Astrophys. J. 529, L45 (2000)

    Article  ADS  Google Scholar 

  27. Church, S., et al.: QUEST on DASI: A south pole CMB polarization experiment. New Astron. Rev. 47, 1083 (2003)

    Article  ADS  Google Scholar 

  28. Ciardi, B., Madau, P.: Probing beyond the Epoch of Hydrogen Reionization with 21 Centimeter Radiation. Astrophys. J. 596, 1 (2003) [arXiv:0303249]

    Article  ADS  Google Scholar 

  29. Ciardi, B., Ferrara, A., White, S.D.M.: Early reionization by the first galaxies. Mon. Not. R. Astron. Soc. 344, L7 (2003)

    Article  ADS  Google Scholar 

  30. Colafrancesco, S., Profumo, S., Ullio, P.: Multi-frequency analysis of neutralino dark matter annihilations in the coma cluster. Astron. Astrophys. 455, 21 (2006)

    Article  ADS  Google Scholar 

  31. Colombi, S., Mellier, Y., Raban, B.: Wide field surveys in cosmology. Editions Frontieres, Gif sur Ivette (1998)

    Google Scholar 

  32. Cooray, A.R.: Weighing neutrinos:Weak lensing approach. Astron. Astrophys. 348, 31 (1999)

    ADS  Google Scholar 

  33. Copeland, E.J., Kibble, T., Steer, D.: Evolution of a network of cosmic string loops. Phys. Rev. 58, D043508 (1998) [hep-ph/9803414]

    ADS  Google Scholar 

  34. Cunow, B., et al.: Photometric CCD sequences for calibration of the ESO/SERC atlas. Astron. Astrophys. Suppl. Ser. 125, 71 (1997)

    Article  ADS  Google Scholar 

  35. D'Abrusco, R., et al.: Mining the SDSS archive. I. Photometric redshifts in the nearby universe. Astrophys. J. 663, 752 (2007)

    Google Scholar 

  36. D'Abrusco, R., Longo, G., Walton, N.A.: Quasar candidates selection in the virtual observatory era. MNRAS, submitted [astro-ph/08050156]

    Google Scholar 

  37. Da Costa, L., et al.: ESO imaging survey: Past activities and future prospects. The Messenger 98, 36 (1999) [astro-ph/9912224]

    ADS  Google Scholar 

  38. de Bernardis, P., et al.: A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)

    Article  ADS  Google Scholar 

  39. de Bernardis, P., et al.: B-Pol: Detecting primordial gravitational waves generated during inflation. Exp. Astron. 23(1), 5 (2009) [arXiv:0808.1881]

    Article  ADS  Google Scholar 

  40. Dickinson, M., et al.: The unusual infrared object HDF-N J123656.3+621322. Astrophys. J. 531, 624 (2000)

    Article  ADS  Google Scholar 

  41. Diemand, J., Kuhlen, M., Madau, P.: Dark matter substructure and gamma-ray annihilation in the milky way halo. Astrophys. J. 657, 262 (2007)

    Article  ADS  Google Scholar 

  42. Diemand, J., Kuhlen, M., Madau, P.: Formation and evolution of galaxy dark matter halos and their substructure. Astrophys. J. 667, 859 (2007)

    Article  ADS  Google Scholar 

  43. Djorgovski, S., et al.: The palomar digital sky survey (DPOSS). In: Wide field surveys in cosmology. Colombi S., Mellier Y., Raban B. (eds.), p. 89 (1998)

    Google Scholar 

  44. Djorgovski, S., et al.: Searches for rare and new types of objects. In: Virtual observatories of the future. Brunner, R.J., Djorgovski, S., Szalay, A.S. (eds.), ASP Conf. Ser. 225, p. 52 (2001)

    Google Scholar 

  45. Djorgovski, S., et al.: The palomar-quest digital synoptic sky survey. Astron. Nachr. 329, 263 (2008)

    Article  ADS  Google Scholar 

  46. Donalek, C.: Neural methods for the Star/galaxy separation. PhD thesis. University of Napoli Federico II (2006)

    Google Scholar 

  47. Dunkley, J. et al.: Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from WMAP Data. Astrophys. J. Suppl. 180, 306 (2009)

    Article  ADS  Google Scholar 

  48. Durrer, R.: Gravitational angular momentum radiation of cosmic strings. Nucl. Phys. B328, 238 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  49. Emerson, J., et al.: Visible and infrared survey telescope for astronomy: Prog. Report. The Messenger 126, 41 (2006); 117, 24 (2004)

    ADS  Google Scholar 

  50. Ettori, S., et al.: Scaling laws in X-ray galaxy clusters at redshift between 0.4 and 1.3. Astron. Astrophys. 417, 13–27 (2004b)

    Article  ADS  Google Scholar 

  51. Fan, X., et al.: High-redshift quasars found in sloan digital sky survey commissioning data. Astron. J. 118, 1 (1999)

    Article  ADS  Google Scholar 

  52. Fan, X., et al.: The discovery of a high-redshift quasar without emission lines from sloan digital sky survey commissioning data. Astrophys. J. 526, L57 (1999)

    Article  ADS  Google Scholar 

  53. Ferrando, P., et al.: Simbol-X: Mission overview. SPIE 6266E, 11 (2006)

    ADS  Google Scholar 

  54. Finkbeiner, D.P., Davis, M., Schlegel, D.J.: Extrapolation of galactic dust emission at 100 microns to cosmic microwave background radiation frequencies using FIRAS. Astrophys. J. 524, 867–886 (1999)

    Article  ADS  Google Scholar 

  55. Fixsen, D.J., Mather, J.C.: The spectral results of the far-infrared absolute spectrophotometer instrument on COBE. Astrophys. J. 581, 817–822 (2002)

    Article  ADS  Google Scholar 

  56. Fixsen, D.J., et al.: The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576–587 (1996)

    Article  ADS  Google Scholar 

  57. Fixsen, D.J., et al.: ARCADE 2 measurements of the extra-galactic sky temperature at 3–90 GHz Submitted to Astrophys. J. (2009) [arXiv:0901.0555]

    Google Scholar 

  58. Fosalba, P., Gaztanaga, E., Castander, F.J.: Detection of the integrated Sachs-Wolfe and Sunyaev-Zel'dovich effects from the cosmic microwave background-galaxy correlation. Astrophys. J. Lett. 597, L89–L92 (2003)

    Article  ADS  Google Scholar 

  59. Fraisse, A., et al.: Small-sngle CMB temperature anisotropies induced by cosmic strings. (2007) [arXiv:0708.1162][AU4]

    Google Scholar 

  60. Gasperini, M.A., et al.: Direct observation of cosmic strings via their strong gravitational lensing effect: I. Predictions for high resolution imaging surveys. Mon. Not. R. Astron. Soc. (2008) [arXiv:0710.5544v2]

    Google Scholar 

  61. Greiner, J., et al.: GROND - a 7-Channel Imager. Pub. Astron. Soc. Pacific 120, 405–424 (2008)  [arXiv:0801.4801]

    Article  ADS  Google Scholar 

  62. Guth, A.H., Pi, S.Y.: Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110–1113 (1982)

    Article  ADS  Google Scholar 

  63. Haiman, Z.: An X-ray galaxy cluster survey for investigations of dark energy (2005) [astroph/07013] submitted to Astrophys. J.

    Google Scholar 

  64. Hambly, N.A., et al.: VISTA data flow system survey access and curation: The WFCAM science archive. In: Optimizing scientific return from astronomy through information technologies. Quinn, P.J., Bridger, A. (eds.). Proc SPIE 5493, 423 (2004)

    Google Scholar 

  65. Hannestad, S., Tu, H., Wong, Y.Y.: Measuring neutrino masses and dark energy with weak lensing tomography. J. Cosmol. Astropart. Phys., JCAP06(2006)025

    Google Scholar 

  66. Hawking, S.W.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B115, 295–297 (1982)

    ADS  Google Scholar 

  67. Hirata, C.M., Seljak, U.: Reconstruction of lensing from the cosmic microwave background polarization. Phys. Rev. D68, 083002 (2003)

    ADS  Google Scholar 

  68. Linder, E.V.: Importance of supernovae at z < 0.1 for probing dark energy. Phys. Rev. D74, 103518 (2006)

    ADS  Google Scholar 

  69. Lipovetsky, V.A.: The importance of wide-field imaging. In: Astronomy from wide field imaging. IAU Symp. 161, p.3. Kluwer, Dordrecht (1994)

    Google Scholar 

  70. Interpretation of the extragalactic radio background. (2009) [arXiv:0901.0559]

    Google Scholar 

  71. Ivezic, Z., et al.: LSST: From science drivers to reference design and anticipated data products (2008) [astro-ph 0805.2366v1] Phys. Rev. D 78, 043535 (2008)

    Google Scholar 

  72. Jeannerot, R., Rocher, J., Sakellariadou, M.: How generic is-cosmic string formation in SUSY GUTs. Phys. Rev. D68, 103514 (2003) [hep-ph/0308134]

    ADS  Google Scholar 

  73. Jenet, F., et al.: Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects. Astrophys. J. 653, 1571 (2006) [astro-ph/0609013]

    Article  ADS  Google Scholar 

  74. Jones, N., Stoica, H., Tye, S.H.: The production, spectrum and evolution of cosmic strings in brane inflation. Phys. Lett. B563, 6 (2003) [hep-th/0303269]

    ADS  Google Scholar 

  75. Kaplinghat, M., Knox, L., Song, Y.S.: Determining neutrino mass from the cosmic microwave background alone. Phys. Rev. Lett. 91, 241301 (2003)

    Article  ADS  Google Scholar 

  76. Kaspi, V., Taylor, J., Ryba, M.: High-precision timing of millisecond pulsars. 3: Long-term monitoring of PSRs B1855+09 and B1937+21. Astrophys. J. 428, 713 (1994)

    Article  ADS  Google Scholar 

  77. Keating, B.G., et al.: BICEP: A large angular scale CMB polarimeter. SPIE 4843, 284 (2003)

    Article  ADS  Google Scholar 

  78. Keller, S.C., et al.: The SkyMapper telescope and the southern sky survey. Pub. of the Astron. Soc. of Australia 24, 1 (2007)

    Article  ADS  Google Scholar 

  79. Kennefick, J.D., et al.: The discovery of five quasars at z > 4 using the second palomar sky survey. Astron. J. 110, 78 (1995)

    Article  ADS  Google Scholar 

  80. Kogut, A., et al.: ARCADE 2 observations of galactic radio emission (2009) [arXiv:0901.0562] “Accepted for publication in MNRAS”

    Google Scholar 

  81. Komatsu, E., et al.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation. (2008) [arXiv:0507013]

    Google Scholar 

  82. Kosowsky, A.: The atacama cosmology telescope. New Astron. Rev. 47, 939–943 (2003)

    Article  ADS  Google Scholar 

  83. Kuhlen, M., Diemand, J., Madau, P.: The shapes, orientation, and alignment of galactic dark matter subhalos. Astrophys. J. 671, 1135 (2007)

    Article  ADS  Google Scholar 

  84. Kuijken, K., et al.: OmegaCAM: The 16x16k CCD camera for the VLT survey telescope. The Messenger 110, 15 (2002)

    ADS  Google Scholar 

  85. Leggett, S., et al.: The missing link: Early methane (“T”) dwarfs in the sloan digital sky survey. Astrophys. J. 536, L35 (2000)

    Article  ADS  Google Scholar 

  86. Lesgourgues, J., Pastor, S., Perotto, L.: Probing neutrino masses with future galaxy redshift surveys. Phys. Rev. D70, 045016 (2004)

    ADS  Google Scholar 

  87. Linde, A.: Chaotic inflation. Phys. Lett. B129, 177–181 (1983)

    ADS  MathSciNet  Google Scholar 

  88. MacGilliwray, H.T., et al.: Astronomy from wide-field imaging. Kluwer, Dordrecht (1994); Space Sci. Rev. 76/3, 363 (1996)

    Google Scholar 

  89. Mack, K.J., Wesley, D.H., King, L.J.: Observing cosmic string loops with gravitational lensing surveys. Phys. Rev. D 76 123515 (2008) [astro-ph/0702648]

    ADS  Google Scholar 

  90. Madau, P., Meiksin, A., Rees, M.J.: 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429 (1997)

    Article  ADS  Google Scholar 

  91. Maffei, B., et al.: CLOVER:The CMB polarization observer. EAS Pub. Ser. 14, 251 (2005)

    Article  Google Scholar 

  92. Masi, S., et al.: Instrument, method, brightness, and polarization maps from the 2003 flight of BOOMERanG. Astron. Astrophys. 458, 687 (2006)

    Article  ADS  Google Scholar 

  93. McLean, B.J., et al.: New horizons from multi-wavelength sky surveys. Kluwer, Dordrecht (1998)

    Google Scholar 

  94. Metcalf, R.B., Madau, P.: Compound gravitational lensing as a probe of dark matter substructure within galaxy halos. Astrophys. J. 563, 9 (2001)

    Article  ADS  Google Scholar 

  95. Moles, M. et al.: The ALHAMBRA Survey: For a systematic study of cosmic evolution (2005) [astro-ph/0504545]

    Google Scholar 

  96. Moore, B., et al.: Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks. Mon. Not. R. Astron. Soc. 368, 563 (2006)

    Article  ADS  Google Scholar 

  97. Muchovej, S., et al.: Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array. Astrophys. J. 663, 708 (2007)

    Article  ADS  Google Scholar 

  98. Mukhanov, V.F., Chibisov, G.V.: Quantum fluctuations and a nonsingular universe. J. Exp. Theor. Phys. Lett. 33, 532–535 (1981)

    Google Scholar 

  99. Mullis, C.R., et al.: Discovery of an X-ray-luminous galaxy cluster at z = 1.4. Astrophys. J. Lett. 623, L85–L88 (2005)

    Article  ADS  Google Scholar 

  100. Nolta, M. et al.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: Angular power spectra. Astrophys. J., submitted

    Google Scholar 

  101. Okamoto, T., Hu, W.: CMB lensing reconstruction on the full sky. Phys. Rev. D7, 083002 (2003)

    ADS  Google Scholar 

  102. Olum, K., Vanchurin, V.: Cosmic string loops in the expanding universe. Phys. Rev. D 75 063521 (2007) [astro-ph/0610419v3]

    Google Scholar 

  103. Peacock, J.A., et al.: Report by the ESA-ESO Working Group on Fundamental Cosmology (2006) [astro-ph/0610906]

    Google Scholar 

  104. Perlmutter, S. et al., Discovery of a supernova explosion at half the age of the universe. Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  105. Piat, M., et al.: Precise measurement of CMB polarisation from Dome-C: the BRAIN and CLOVER experiments. In: Semaine de l'Astrophysique Francaise. Combes, F., Barret, D., Contini, T., Meynadier, F., Pagani, L. (eds.) EdP-Sciences, Conf. Ser., p. 707 (2004)

    Google Scholar 

  106. Pierre, M., et al.: The XMM-large scale structure catalogue:X-ray sources and associated optical data. Mon. Not. R. Astron. Soc. 382, 279–290 (2007)

    Article  ADS  Google Scholar 

  107. Planck Collaboration: The Scientific Programme of Planck. ESA-SCI(2005)1 [astro-ph/0604069]

    Google Scholar 

  108. Polchinski, J.: Cosmic string loops and gravitational radiation. In: Proceedings of the 11th Marcel Grossmann Meeting on General Relativity (2007) [arXiv:0707.0888v2]

    Google Scholar 

  109. Predehl, P., et al.: eROSITA. SPIE 6266E, 19 (2006)

    ADS  Google Scholar 

  110. Reid, I.N., et al.: The second palomar sky survey. Pub. Astron. Soc. Pacific 103, 661 (1991)

    Article  ADS  Google Scholar 

  111. Renzini, A., Da Costa, L.: The ESO imaging survey. The Messenger 87, 23 (1997)

    ADS  Google Scholar 

  112. Richards, G.T., et al.: Colors of 2625 quasars at 0 < z < 5 measured in the sloan digital sky survey photometric system astron. J. 121, 2308 (2001)

    ADS  Google Scholar 

  113. Richards, G.T., et al.: Spectroscopic target selection in the sloan digital sky survey: The quasar sample. Astrophys. J. 123, 2945 (2002)

    Google Scholar 

  114. Richards, G.T., et al.: Efficient photometric selection of quasars from the sloan digital sky survey: 100000 z < 3 quasars from data release one. Astrophys. J. Suppl. Ser. 155, 257 (2004)

    Article  ADS  Google Scholar 

  115. Romer, A.K., et al.: Cluster Survey with XMM: Expected Catalog Properties and Scientific Applications. Astrophys. J. 547, 594–608 (2001)

    Article  ADS  Google Scholar 

  116. Rubakov, V.A., Sazhin, M.V., Veryaskin, A.V.: Graviton creation in an inflationary universe and the grand unification scale. Phys. Lett. B 115, 189–192 (1982)

    ADS  Google Scholar 

  117. Ruhl, J., et al.: The South Pole telescope. Proc. of SPIE 5498, 11 (2004)

    Article  ADS  Google Scholar 

  118. Sahlén, M., et al.: The XMM cluster survey: Forecasting cosmological and cluster scaling-relation parameter constraints. [arXiv:0802.4462vl] (2008)

    Google Scholar 

  119. Sazhin, M., et al.: Gravitational lensing by cosmic strings: What we learn from the CSL-1 case. Mon. Not. R. Astron. Soc. 376, 1731 (2007) [astro-ph/0611744]

    Article  ADS  Google Scholar 

  120. Schmidt, B., et al.: The high-Z supernova search: Measuring cosmic deceleration and global curvature of the Universe using type IA supernovae. Astrophys. J. 507, 46 (1998)

    Article  ADS  Google Scholar 

  121. Seiffert, M., et al.: 1/f noise and other systematic effects in the Planck-LFI radiometers. Astron. Astrophys. 391, 1185–1197 (2002)

    Article  ADS  Google Scholar 

  122. Sesar, B., et al.: Exploring the variable sky with the sloan digital sky survey. Astron. J. 134, 2236 (2007)

    Article  ADS  Google Scholar 

  123. Singal, J., et al.: The ARCADE 2 Instrument. (2009) [arXiv:0901.0546]

    Google Scholar 

  124. Smoot, G.F., et al.: Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Lett. 396, L1–L5 (1992)

    Article  ADS  Google Scholar 

  125. Springel, V., Hernquist, L.: The history of star formation in a Λ cold dark matter universe. Mon. Not. R. Astron. Soc. 339, 312 (2003)

    Article  ADS  Google Scholar 

  126. Stadel, J.: Cosmological N-body simulations and their analysis. PhD thesis, University of Washington (2001)

    Google Scholar 

  127. Staiano, A.: Probabilistic principal surfaces and PPS ensembles. PhD thesis, University of Salerno (2005)

    Google Scholar 

  128. Starobinsky, A.A.: Spectrum of relict gravitational radiation and the early state of the universe. J. Exp. Theor. Phys. Lett. 30, 682–685 (1979)

    Google Scholar 

  129. Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B117, 175–178 (1982)

    ADS  Google Scholar 

  130. Strolger, L.: The rate of supernovae in the local universe. PhD thesis, University of Michigan (2003)

    Google Scholar 

  131. Swade, D.A., Hopkins, E., Swam, M.S.: HST data flow with on-the-Fly Reprocessing. In: ASP Conf. Ser. ADASS X. 238, 295 (2001)

    Google Scholar 

  132. Szalay, A.A., et al.: Microsoft Research Technical Report MS-TR-99-30 (1999) [astro-ph/9907009]

    Google Scholar 

  133. Szkody, P., et al.: Two rare magnetic cataclysmic variables with extreme cyclotron features identified in the sloan digital sky survey. Astrophys. J. 583, 902 (2003)

    Article  ADS  Google Scholar 

  134. Tauber, J.A.: The Planck mission. Adv. Space Res. 34, 491 (2004)

    Article  ADS  Google Scholar 

  135. The AKARI satellite web site, http://www.ir.isas.jaxa.jp/AKARI/ Outreach/index_e.html

  136. The Herschel satellite web site, http://herschel.esac.esa.int/overview.shtml

  137. The Pierre Auger Collaboration: Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger observatory. Astropart. Phys. 29, 243 (2008)

    Article  ADS  Google Scholar 

  138. The QUIJOTE experiment web site, http://www.iac.es/project/cmb/quijote/index_esp.php

  139. Traitement Élémentaire, Réduction et Analyse des PIXels de Megacam. http://terapix.iap.fr/

  140. Udalski, A., et al.: The optical gravitational lensing experiment. Discovery of the first candidate microlensing event in the direction of the Galactic Bulge. Acta Astron. 43, 289 (1993)

    ADS  Google Scholar 

  141. URL: http://www.ivoa.org/

  142. Vachaspati, T., Vilenkin, A.: Formation and evolution of cosmic strings. Phys. Rev. D30, 2036 (1984)

    ADS  Google Scholar 

  143. Valentijn, E.A., et al.: Astro-WISE: Chaining to the Universe. In: ASP Conf. Ser., ADASS XVI 376, 491 (2007)

    Google Scholar 

  144. Venemans, B.P., et al.: The discovery of the first luminous z ∼ 6 quasar in the UKIDSS large area survey. Mon. Not. R. Astron. Soc. 376, L76 (2007)

    Article  ADS  Google Scholar 

  145. Vikhlinin, A., et al.: Chandra sample of nearby relaxed galaxy clusters: Mass, gas fraction, and mass-temperature relation. Astrophys. J. 640, 691–709 (2006)

    Article  ADS  Google Scholar 

  146. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  147. Vincent, G., Hindmarsh, M., Sakellariadou, M.: Scaling and small scale structure in cosmic string networks. Phys. Rev. D 56, 637 (1997) [astro-ph/9612135]

    ADS  Google Scholar 

  148. Voevodkin, A., Vikhlinin, A.: Constraining amplitude and slope of the mass fluctuation spectrum using a cluster baryon mass function. Astrophys. J. 601, 610–620 (2004)

    Article  ADS  Google Scholar 

  149. Volonteri, M., Haardt, F., Madau, P.: The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559 (2003)

    Article  ADS  Google Scholar 

  150. Yadav, A.P.S., Wandelt, B.D.: Detection of primordial non-Gaussianity (fNL) in the WMAP 3-year data at above 99.5% confidence, Phys. Rev. Lett. submitted

    Google Scholar 

  151. Yepes, G., et al.: Hydrodynamical simulations of galaxy formation: effects of supernova feedback. Mon. Not. R. Astron. Soc. 284, 235 (1997)

    ADS  Google Scholar 

  152. York, D.G., et al.: The sloan digital sky survey: Technical summary. Astron. J. 120, 1579 (2000)

    Article  ADS  Google Scholar 

  153. Wade, L.A., et al.: The Planck mission 9. Advances in Cryogenic Eng. 45, 499–506 (2000)

    Google Scholar 

  154. Wittman, D., et al.: Deep lens survey. Tyson, J.A., Wolff, S. (eds.). In: Astronomy with large telescopes: Survey and other telescope technologies and discoveries. Proc. SPIE 4836, 73 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Bartelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartelmann, M. et al. (2009). Next Challenges. In: D'Onofrio, M., Burigana, C. (eds) Questions of Modern Cosmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00792-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00792-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00791-0

  • Online ISBN: 978-3-642-00792-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics