Skip to main content

Symbols and Mediation in Mathematics Education

  • Chapter
  • First Online:
Theories of Mathematics Education

Part of the book series: Advances in Mathematics Education ((AME))

Abstract

In this paper we discuss topics that are relevant for designing a theory of mathematics education. More precisely, they are elements of a pre-theory of mathematics education and consist of a set of interdisciplinary ideas which may lead to understand what occurs in the central nervous system—our metaphor for the classroom, and eventually, in larger educational settings. In particular, we highlight the crucial role of representations, the mediation role of artifacts, symbols viewed from an evolutionary perspective, and mathematics as symbolic technology.

This paper is dedicated to Jim Kaput (1942–2005), whose work on representations and technology is an inspiration to us all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovich, & Pieper (1996). Fostering recursive thinking in combinatorics through the use of manipulatives and computer technology. The Mathematics Educator, 7(1), 4–12.

    Google Scholar 

  • Bailey, D., & Borwein, P. (2001). Mathematics Unlimited 2001 and Beyond. Berlin: Springer-Verlag. B. Engquist and W. Schmid (Eds.).

    Google Scholar 

  • Balacheff, N., & Kaput, J. (1996). Computer-based learning environment in mathematics. In A. J. Bishop et al. (Eds.), International Handbook of Mathematical Education (pp. 469–501). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Batanero, C., & Godino, J. D. (1998). Understanding graphical and numerical representations of statistical association. In A Computer Environment. V International Conference on Teaching Statistics, Singapore.

    Google Scholar 

  • Connes, A., Lichnerowicz, A., & Schützenberger, M. (2001). Triangle of Thoughts. Providence, RI: American Mathematical Society.

    Google Scholar 

  • Courant, R., & Robbins, H. (1996). What is Mathematics? New York: Oxford U. Press.

    Google Scholar 

  • Dauben, J.W. (1990). Georg Cantor: His Mathematics and Philosophy of Infinite. Princeton: Princeton Univ. Press.

    Google Scholar 

  • Davis, P., & Hersh, R. (1986). The Mathematical Experience. Boston: Birkhäuser.

    Google Scholar 

  • Deacon, T. (1997). The Symbolic Species. New York: W.W. Norton and Company.

    Google Scholar 

  • Donald, M. (2001). A Mind so Rare. New York: Norton.

    Google Scholar 

  • Dietrich, O. (2004). Cogntive evolution. In F. M. Wuketits & C. Antweiler (Eds.), Hanbook of Evolution (pp. 25–77). Weinheim: Wiley-VCH Verlag GmbH & Co.

    Google Scholar 

  • Flegg, G. (1983). Numbers: Their History and Meaning. Baltimore: Penguin.

    Google Scholar 

  • Gleick, J. (1992). Genius. New York: Pantheon.

    Google Scholar 

  • Goedel, K. (1983). What is Cantor’s continuum problem? In Benacerraf & Putnam (Eds.), Philosophy of Mathematics (2nd ed.). Cambridge: Cambridge U. Press.

    Google Scholar 

  • Goldin, G. (2004). Problem solving heuristics, affect, and discrete mathematics. International Reviews on Mathematical Education, 36(2), 56–60.

    Google Scholar 

  • Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics. Journal of Mathematical Behavior, 17(2), 137–165.

    Article  Google Scholar 

  • Goldin, G. A., & Kaput, J. J. (1996). A joint perspective on the idea of representation in learning and doing mathematics. In L. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.), Theories of Mathematical Learning (pp. 397–430). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Goldstein, C. (1999). La naissance du Nombre en Mesopotamie. La Recherche, L’Univers des Nombres (hors de serie).

    Google Scholar 

  • Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.

    Article  Google Scholar 

  • Joseph, G. G. (1992). The Crest of the Peacock. Princeton: Princeton University Press.

    Google Scholar 

  • Kline, M. (1962). Mathematics: A Cultural Approach. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Kline, M. (1980). Mathematics, The Loss of Certainty. New York: Oxford University Press.

    Google Scholar 

  • Lakatos, I. (1976). Proofs and Refutations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Maturana, H. R. (1980). Biology of cognition. In Autopoiesis and Cognition (pp. 2–62). Boston Studies in the Philosophy of Science. Boston: Reidel.

    Google Scholar 

  • Miller, Kelly, & Zhou (2005). In Handbook of Mathematical Cognition (pp. 163–178).

    Google Scholar 

  • Moreno, L. A., & Sriraman, B. (2005). Structural stability and dynamic geometry: Some ideas on situated proofs. International Reviews on Mathematical Education, 37(3), 130–139.

    Google Scholar 

  • Ong, W. (1998). Orality and Literacy. London: Routledge.

    Google Scholar 

  • Otte, M. (2006). Mathematical epistemology from a Peircean point of view. Educational Studies of Mathematics, 61(1–2).

    Google Scholar 

  • Peitgen, Jürgen, & Saupe (1992). Fractals for the Classroom (Vol. 1). New York: Springer-Verlag.

    Google Scholar 

  • Principles and Standards for School Mathematics (NCTM), 2000.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies. Approche cognitive des instruments contemporains. Paris: Armand Colin.

    Google Scholar 

  • Sriraman, B. (2004). Discovering Steiner triple systems through problem solving. The Mathematics Teacher, 97(5), 320–326.

    Google Scholar 

  • Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.

    Article  Google Scholar 

  • Vygotsky, L. S. (1981). The instrumental method in psychology. In J. Wertsch (Ed.), The Concept of Activity in Soviet Psychology (pp. 135–143). Armonk, N.Y.: Sharpe.

    Google Scholar 

  • Wertsch, J. W. (1991). Voices of the Mind. Cambridge, MA: Harvard Univ. Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Moreno-Armella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moreno-Armella, L., Sriraman, B. (2010). Symbols and Mediation in Mathematics Education. In: Sriraman, B., English, L. (eds) Theories of Mathematics Education. Advances in Mathematics Education. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00742-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00742-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00741-5

  • Online ISBN: 978-3-642-00742-2

  • eBook Packages: Humanities, Social Sciences and LawEducation (R0)

Publish with us

Policies and ethics