Skip to main content

Nivalenol: The Mycology, Occurrence, Toxicology, Analysis and Regulation

  • Chapter
  • First Online:
Mycotoxins in Food, Feed and Bioweapons

Abstract

Nivalenol (NIV) is a mycotoxin contaminated in wheat and barley affected by Fusarium head blight (FHB, Fig. 15.1). FHB is caused by the infection of wheat, barley and maize by Fusarium. Fusarium mycotoxins are produced in the infected plants and accumulate in agricultural products. The majority of Fusarium mycotoxins giving rise to food safety concerns are trichothecene mycotoxins possessing the 12,13-epoxy-trichothecene skeleton. These mycotoxins can be classified into two types: Type A including T2 toxin and HT2 toxin, diacetoxyscirpenol and neosolaniol, and Type B including deoxynivalenol (DON), NIV and fusarenon X (FX). The major pathogens causing FHB are Fusarium graminearum and F. culmorum, which are highly phytopathogenic fungi distributed worldwide, and which mainly produce DON and NIV. In Japan, the occurrence of these fungi has long been reported, and both DON and NIV were discovered by Japanese researchers. Taking advantage of the head blight epidemic across Western Japan in 1963, Tatsuno et al. (1968) successfully isolated the toxigenic fungus, Fusarium nivale Fn-2B (renamed F. kyusyuense in 1998, Aoki and O'Donnell 1998). In 1972, Yoshizawa and Morooka (1973) discovered DON in wheat and barley affected by FHB. The discovery of DON revealed the co-contamination with DON and NIV in domestic wheat and barley, and triggered co-contamination surveys around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson D, Clear RM, Gaba D, Smith DM, Patrick SK, Saydak D (2001) Trichothecene and moniliformin production by Fusarium species from Western Canadian Wheat. J Food Prot 64(8):1220–1225

    PubMed  CAS  Google Scholar 

  • Aoki T, O'Donnell K (1998) Fusarium kyushuense sp. nov. from Japan. Mycoscience 39(1):1–6

    Article  Google Scholar 

  • Arase K, Saijo K, Watanabe H, Konno A, Arase H, Saito T (1999) Ablation of a specific cell population by the replacement of a uniquely expressed gene with a toxin gene. Proc Natl Acad Sci USA 96(16):9264–9268

    Article  PubMed  CAS  Google Scholar 

  • Atanassov Z, Nakamura C, Mori N, Kaneda C, Kato H, Jin Y-Z, Yoshizawa T, Murai K (1994) Mycotoxin production and pathogenicity of Fusarium species and wheat resistance to Fusarium head blight. Can J Bot 72(2):161–167

    Article  CAS  Google Scholar 

  • Berek L, Petri IB, Mesterhazy Á, Téren J, Molnár J (2001) Effects of mycotoxins on human immune functions in vitro. Toxicol In Vitro 15(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Burgess LW, Nelson PE, Toussoun TA (1982) Characterization, geographic distribution and ecology of Fusarium crookwellense sp. Nov. Trans Br Mycol Soc 79(3):497–505

    Article  Google Scholar 

  • Carter JP, Rezanoor HN, Holden D, Desjardins AE, Plattner RD, Nicholson P (2002) Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur J Plant Pathol 108(6):573–583

    Article  CAS  Google Scholar 

  • Chelkowski J, Golinski P, Perkowski J, Visconti A, Rakowska M, Wakulinski W (1991) Toxinogenicity of Microdochium nivale (Fusarium nivale) isolates from cereals in Poland. Mycotoxin Res 7:140–145

    Article  Google Scholar 

  • Choi C-Y, Nakajima-Adachi H, Kaminogawa S, Sugita-Konishi Y (2000) NIV inhibits total and antigen-specific IgE production in mice. Toxicol Appl Pharmacol 165(1):94–98

    Article  PubMed  CAS  Google Scholar 

  • Cumagun CJR, Bowden RL, Jurgenson JE, Leslie JF, Miedaner T (2004) Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae (Fusarium graminearum) toward wheat. Phytopathology 94(5):520–526

    Article  PubMed  CAS  Google Scholar 

  • Desjardins AE, Jarosz AM, Plattner RD, Alexander NJ, Brown DW, Jurgenson JE (2004) Patterns of trichothecene production, genetic variability, and virulence to wheat of Fusarium graminearum from smallholder farms in Nepal. J Agric Food Chem 52(20):6341–6346

    Article  PubMed  CAS  Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins: chemistry, genetics, and biology. American Phytopathological Society Press, St. Paul, MN, USA

    Google Scholar 

  • European Commission (2003) Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states. Report on tasks for scientific cooperation (SCOOP) 3.2.10, European Commission, Brussels. http://ec.europa.eu/food/fs/scoop/task3210.pdf. Accessed 20 Dec 2007

  • European Commission Scientific Committee on Food (2000) Opinion of the scientific committee on food on Fusarium toxins. Part 4: Nivalenol (NIV) SCF/CS/CNTM/MYC/26 Final. http://Europe.eu.int/comm./food/fs/sc/scf/index_en.html. Accessed 20 Dec 2007

  • Gale LR, Ward TJ, O'Donnell K, Harrison SA, Kistler HC (2005) Fusarium head blight of wheat in Louisiana is caused largely by nivalenol producers of Fusarium graminearum and Fusarium asiaticum. Proceedings of the 2005 National Fusarium Head Blight Forum, p 159

    Google Scholar 

  • Gams W (1989) Taxonomy and nomenclature of Microdochium nivale (Fusarium nivale). In: Chelkowski J (ed) Fusarium mycotoxins, taxonomy and pathogenicity. Elsevier, Amsterdam, pp 195–198

    Google Scholar 

  • Gams W, Müller E (1980) Conidiogenesis of Fusarium nivale and Rhynchosporium oryzae and its taxonomic implications. Eur J Plant Pathol 86(1):45–53

    Google Scholar 

  • Golinski P, Vesonder RF, Latus-Zietkiewicz D, Perkowski J (1988) Formation of fusarenone X, nivalenol, zearalenone, a-trans-zearalenol, b-trans-zearalenol, and fusarin C by Fusarium crookwellense. Appl Environ Microbiol 54(4):2147–2148

    PubMed  CAS  Google Scholar 

  • Gouze ME, Laffitte J, Printon P, Dedieux G, Galinier A, Thouvenot JP, Loiseau N, Oswald IP, Galtier P (2007) Effect of subacute oral doses of nivalenol on immune and metabolic defence systems in mice. Vet Res 38(4):635–646

    Article  PubMed  CAS  Google Scholar 

  • Hasui M, Saikawa Y, Miura M, Takano N, Ueno Y, Yachie A, Miyawaki T, Taniguchi N (1989) Effector and precursor phenotypes of lymphokine-activated killer cells in mice with severe combined immunodeficiency (scid) and athymic (nude) mice. Cell Immunol 120(1):230–239

    Article  PubMed  CAS  Google Scholar 

  • Hedman R, Pettersson H, Lidberg JE (1997) Absorption and metabolism of nivalenol in pigs. Archiv für Tierernährung 50(1):13–24

    Article  PubMed  CAS  Google Scholar 

  • Hinoshita F, Suzuki Y, Yokohama K, Hara S, Yamada A, Ogura Y, Hashimoto H, Tomura S, Marumo F, Ueno Y (1997) Experimental IgA nephropathy induced by a low-dose environmental mycotoxin, nivalenol. Nephron 75(4):469–478

    Article  PubMed  CAS  Google Scholar 

  • Hsia CC, Wu ZY, Li YS, Zhang F, Sun ZT (2004) Nivalenol, a main Fusarium toxin in dietary foods from high-risk areas of cancer of esophagus and gastric cardia in China, induced benign and malignant tumors in mice. Oncol Rep 12(2):449–456

    PubMed  CAS  Google Scholar 

  • IARC (1993) Monographs on the evaluation of carcinogenic risks to humans. Some naturally occurring stubstances: food items and constituents, heterocyclic aromatic amines and mycotoxins. vol 56. International Agency for Research on Cancer, World Health Organization, Lyon, pp 397–443

    Google Scholar 

  • Ichinoe M, Kurata H, Sugiura Y, Ueno Y (1983) Chemotaxonomy of Gibberella zeae with special reference to production of trichothecenes and zearalenone. Appl Env Microbiol 46(6):1364–1369

    CAS  Google Scholar 

  • Ito Y, Ueno Y, Tanaka T, Nakamura K, Ohtsubo K (1988) Embryotoxicity of oral nivalenol in mice. Mycotoxins (Tokyo) 27:33–36

    CAS  Google Scholar 

  • Jennings P, Coates ME, Turner JA, Chandler EA, Nicholson P (2004) Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathol 53(2):182–190

    Article  CAS  Google Scholar 

  • Kawasaki Y, Uchida O, Sekita K, Matsumoto K, Ochiai T, Usui A, Nakaji Y, Furuya T, Kurokawa Y, Tobe M (1990) Single and repeated oral administration toxicity studies of nivalenol in F344 rats. J Food Hyg Soc Jpn 31(2):144–154

    Article  CAS  Google Scholar 

  • Kim HS, Lee T, Dawlatana M, Yun SH, Lee YW (2003) Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Mycol Res 107(02):190–197

    Article  PubMed  CAS  Google Scholar 

  • Kubosaki A, Aihara M, Park BJ, Sugiura Y, Shibutani M, Hirose M, Suzuki Y, Takatori K, Sugita-Konishi Y (2008) Immunotoxicity of Nivalenol after subchronic dietary exposure to rats. Food Chem Toxicol 46(1):253–258

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Han YK, Kim KH, Yun SH, Lee YW (2002) Tri 13 and Tri 7 determine deoxynivalenol- and nivalenol- producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68(5):2148–2154

    Article  PubMed  CAS  Google Scholar 

  • Marasas WFO, Nelson PE, Toussoun TA (1984) Identify and mycotoxicology. In:Toxigenic Fusarium species. Pennsylvania State University Press, University Park, PA, USA, pp 273–310

    Google Scholar 

  • Marasas WFO, Nelson PE, Toussoun TA (1985) Taxonomy of toxigenic fusaria. In: Lacey J (ed) Tricothecenes and other mycotoxins. Wiley, New York, pp 3–14

    Google Scholar 

  • Mielniczuk E, Kiecana I, Perkowski J (2004) Susceptibility of oat genotypes to Fusarium crookwellense Burgess, Nelson and Toussoun infection and mycotoxin accumulation in kernels. Biologia 59(6):809–816

    CAS  Google Scholar 

  • Miller JD, Greenhalgh R, Wang Y-Z, Lu M (1991) Trichothecene chemotypes of three Fusarium species. Mycologia 83(2):121–130

    Article  CAS  Google Scholar 

  • Mirocha CJ, Abbas HK, Windels CE, Xie W (1989) Variation in deoxynivalenol, 15-deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone production by Fusarium graminearum isolates. Appl Environ Microbiol 55(5):1315–1316

    PubMed  CAS  Google Scholar 

  • Monds RD, Cromey MG, Lauren DR, Menna M, Marshall J (2005) Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species. Mycol Res 109(04):410–420

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Yoshida M (2007) Mycotoxin productivity and virulence of Fusarium graminearum species complex causing Fusarium head blight on wheat and barley in the western part of Japan. Jpn J Phytopathol 73(2):106–111 (in Japanese with English abstract)

    Article  CAS  Google Scholar 

  • Nakajima T, Naito S (1995) Reassessment of mycotoxin productivity of Microdochium nivale in Japan. Ann Phytopathol Soc Jpn 61(44):357–361

    Article  CAS  Google Scholar 

  • O'Donnel K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A 97(14):7905–7910

    Article  Google Scholar 

  • O'Donnel K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Geneological concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41:600–623

    Article  Google Scholar 

  • Ohtsubo K, Ryu LC, Nakamura K, Izumiyama N, Tanaka T, Yamamura H, Kobayashi T, Ueno Y (1989) Chronic toxicity of of nivalenol in female mice: a 2-year feeding study with Fusarium nivale Fn 2b moulded rice. Food Chem Toxicol 27(9):591–598

    Article  PubMed  CAS  Google Scholar 

  • Onji Y, Dohi Y, Aoki Y, Moriyama T, Nagami H, Uno M, Tanaka T, Yamazoe Y (1989) Deepoxynivalenol: a new metabolite of nivalenol found in the excreta of orally administered rats. J Agric Food Chem 37:478–481

    Article  CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals – a review. Plant Pathol 44(2):207–238

    Article  Google Scholar 

  • Pettersson H, Hedman R, Engstrom B, Elwinger K, Fossum O (1995) Nivalenol in Swedish cereals — occurrence, production and toxicity towards chickens. Food Addit Contam 12(3):373–376

    Article  PubMed  CAS  Google Scholar 

  • Placinta CM, D'Mello JBF, Macdonald AMC (1999) A review of world contamination of cereal grains and animal feeds with Fusarium mycotoxins. Anim Feed Sci Technol 78(1):21–37

    Article  CAS  Google Scholar 

  • Poapolathep A, Sugita-Konishi Y, Phitsanu T, Doi K, Kumagai S (2004) Placental and milk transmission of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice. Toxicon 44(1):111–113

    Article  PubMed  CAS  Google Scholar 

  • Ryu J-C, Ohtsubo K, Izumiyama N, Mori M, Tanaka T, Ueno Y (1987) Effects of nivalenol on the bone marrow in mice. J Toxicol Sci 12(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Ryu J-C, Ohtsubo K, Izumiyama N, Mori M, Tanaka T, Yamamura H, Ueno Y (1988) The acute and chronic toxicities of nivalenol in mice. Fundam Appl Toxicol 11(1):38–47

    Article  PubMed  CAS  Google Scholar 

  • Schothorst RC, Jekel AA (2001) Determination of trichothecenes in wheat by capillary gas chromatography with flame ionisation detection. Food Chem 73(1):111–117

    Article  CAS  Google Scholar 

  • Seo JA, Kim JC, Lee DH, Lee YW (1996) Variation in 8-ketotrichothecenes and zearalenone production by Fusarium graminearum isolates from corn and barley in Korea. Mycopathologia 134(1):31–37

    Article  PubMed  CAS  Google Scholar 

  • Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M (2008) Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98(1):159–166

    Article  PubMed  CAS  Google Scholar 

  • Sugita-Konsihi Y, Tanaka T, Tabata S, Nakajima M, Nouno M, Nakaie Y, Chonan T, Aoyagi M, Kibune N, Mizuno K, Ishikuro E, Kanamaru N, Minamisawa M, Aita N, Kushiro M, Tanaka K, Takatori K (2006) Validation of an HPLC analytical method coupled to a multifunctional clean-up column for the determination of deoxynivalenol. Mycopathologia 161(4):239–243

    Article  PubMed  CAS  Google Scholar 

  • Sugiura Y, Fukasaku K, Tanaka T, Matsui Y, Ueno Y (1993) Fusarium poae and Fusanium crookwellense, fungi responsible for the natural occurrence of nivalenol in Hokkaido. Appl Environ Microbiol 59(10):3334–3338

    PubMed  CAS  Google Scholar 

  • Takahashi M, Shibutani M, Sugita-Konishi Y, Aihara M, Inoue K, Woo G-H, Fujimoto H, Hirose M (2008) A 90-day subchronic toxicity studyof nivalenol, a trichothecene mycotoxin, in F344 rats. Food Chem Toxicol 46(1):125–135

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Takino M, Sugita-Konishi Y, Tanaka T (2006) Development of a liquid chromatography/time of flight mass spectrometric method for the simultaneous determination of trichothecenes, zearalenone and aflatoxins in foodstuffs. Rapid Commun Mass Spectrom 20(9):1422–1428

    Article  PubMed  CAS  Google Scholar 

  • Tatsuno T, Morita Y, Tsunoda H, Umeda M (1970) Rechereches toxicologiques des substances métaboliques du Fusarium nivale VII. La troisiéme substance metabolique de F. nivale, le diacetate de nivalenol. Chem Pharm Bull 18(7):1485–1487

    PubMed  CAS  Google Scholar 

  • Tatsuno T, Saito M, Enomoto M, Tsunoda H (1968) Nivalenol, a toxic principle of Fusarium nivale. Chem Pharm Bull 16(12):2519–2520

    Article  PubMed  CAS  Google Scholar 

  • Tep J, Videmann B, Mazallon M, Balleydier S, Cavret S, Lecoeur S (2007) Transepithelial transport of fusariotoxin nivalenol: mediation of secretion by ABC transporters. Toxicol Lett 170(3):248–258

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Ueno I, Tatsuno T, Ohkubo K, Tsunoda H (1969) Fusarenon-X, a toxic principle of Fusarium nivale culture filtrate. Experientia 25(10):1062

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y (1983) General toxicology. In: Ueno Y (ed) Developments of food science. IV Trichothecenes-chemical, biological and toxicological aspects. Kodansya, Tokyo, pp 135–146

    Google Scholar 

  • Ueno Y, Kobayashi T, Yamamura H, Kato T, Tashiro F, Nakamura K, Ohtsubo K (1991) Effect of long-term feeding of nevalenol on aflatoxin B1-initiated hepatocarcinogenesis in mice. Relevance to human cancer of N-nitroso compounds,tobacco and mycotoxins. IARC Scientific Publications No.105. International Agency for Research on Cancer, World Health Organization, Lyon, pp 420–423

    Google Scholar 

  • Ueno Y, Yabe T, Hashimoto H, Sekijima M, Masuda T, Kim DJ, Hasegawa R (1992) Enhancement of GST-P-positive liver cell foci development by nivalenol, a trichothecene mycotoxin. Carcinogenesis 13(5):787–791

    Article  PubMed  CAS  Google Scholar 

  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O'Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A 99(14):9278–9283

    Article  PubMed  CAS  Google Scholar 

  • Weidenborner M (2008) Mycotoxins in food stuffs. Springer Science+Business Media LLC, Cambridge, MA,USA

    Book  Google Scholar 

  • World Health Organization (2001) Safety evaluation of certain mycotoxins in food. WHO Food Additives series No. 47. Prepared by the Fifth-Sixth meeting of the joint FAO/WHO Expert committee on food additives (JECFA), WHO, Geneva, pp 419–556

    Google Scholar 

  • Yabe T, Hashimoto H, Sekijima M, Degawa M, Hashimoto Y, Tashiro F, Ueno Y (1993) Effects of nivalenol on hepatic drug-metabolizing activity in rats. Food Chem Toxicol 31(8):573–581

    Article  PubMed  CAS  Google Scholar 

  • Yamamura H, Kobayashi T, Ryu J-C, Ueno Y, Nakamura K, Izumiyama N, Ohtsubo K (1989) Subchoronic feeding studies with nivalenol in C57BL/6 mice. Food Chem Toxicol 27(9):585–590

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Nakajima T, Arai M, Tomimura K (2004) Symptom and myvotoxin accumulation in rice inoculated with Fusarium graminearum isolated from wheat and barley. Proceedings of 2nd International Symposium on Fusarium Head Blight p 539

    Google Scholar 

  • Yoshizawa T, Jin YZ (1995) Natural occurrence of acetylated derivatives of deoxynivalenol and nivalenol in wheat and barley in Japan. Food Addit Contam 12(5):689–694

    Article  PubMed  CAS  Google Scholar 

  • Yoshizawa T, Morooka N (1973) Deoxynivalenol and its monoacetate: new mycotoxins from Fusarium roseum and moldy barley. Agric Biol Chem 37(12):2933–2934

    Article  CAS  Google Scholar 

  • Yuwai KE, Rao KS, Singh K, Tanaka T, Ueno Y (1994) Occurrence of nivalenol, deoxynivalenol, and zearalenone in imported cereals in Papua, New Guinea. Nat Toxins 2(1):19–21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Sugita-Konishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sugita-Konishi, Y., Nakajima, T. (2009). Nivalenol: The Mycology, Occurrence, Toxicology, Analysis and Regulation. In: Rai, M., Varma, A. (eds) Mycotoxins in Food, Feed and Bioweapons. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00725-5_15

Download citation

Publish with us

Policies and ethics