Skip to main content

Nanostructuring and Dissolution of Cementite in Pearlitic Steels During Severe Plastic Deformation

  • Chapter
  • First Online:
Nanoscale Phenomena

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Strain-induced cementite dissolution is a well-documented phenomenon, which occurs during the cold plastic deformation of pearlitic steels. Recently new results that can shed additional light on the mechanisms of this process were obtained thanks to atom probe tomography investigations of pearlitic steel deformed by highpressure torsion (HPT). It was shown that the process of cementite decomposition starts by carbon depletion from the carbides due to defect motion; once enough carbon is robbed from the carbide it is thermodynamically destabilized resulting in rapid break-up. Additionally, it was shown that the carbon atoms do not really dissolve in the ferrite but that they segregate to the dislocations and grain boundaries of nanocrystalline ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.N. Gridnev, V.G. Gavrilyuk, Phys. Metals 4, 531 (1982)

    Google Scholar 

  2. Yu.V. Ivanisenko, G. Baumann, H.-J. Fecht, I.M. Safarov, A.V. Korznikov, R.Z. Valiev, Phys. Met. Metallogr. 3, 303 (1997)

    Google Scholar 

  3. W. Lojkowski, M. Djahanbakhsh, G. Bürkle, S. Gierlotka, W. Zielinski, H.-J. Fecht, Mater. Sci. Eng. A303, 197 (2001)

    CAS  Google Scholar 

  4. Yu. Ivanisenko, W. Lojkowski, R.Z. Valiev, H.-J. Fecht, Acta Mater. 51, 5555 (2003)

    Article  CAS  Google Scholar 

  5. Yu. Ivanisenko, R. Wunderlich, R.Z. Valiev, H.-J. Fecht, Scripta Mater. 49, 947 (2003)

    Article  CAS  Google Scholar 

  6. W.J. Nam, Ch.M. Bae, S.J. Oh, S. Kwon, Scripta Mater. 42, 457 (2000)

    Article  CAS  Google Scholar 

  7. J. Languilaumme, G. Kapelski, B. Baudelet, Acta Mater. 45, 1201 (1997)

    Article  Google Scholar 

  8. K. Hono, M. Omuma, M. Murayama, S. Nishida, A. Yoshie, T. Takahashi, Scripta Mater. 44, 977 (2001)

    Article  CAS  Google Scholar 

  9. F. Danoix, D. Julien, X. Sauvage, J. Copreaux, Mater. Sci. Eng. A250, 8 (1998)

    CAS  Google Scholar 

  10. M. Umemoto, K. Todaka, K. Tsuchiya, Mat. Sci. Eng. A375–377, 899 (2004)

    Google Scholar 

  11. Z.G. Liu, X.J. Hao, K. Masuyama, K. Tsuchiya, M. Umemoto, S.M. Hao, Scripta Mater. 44, 1775 (2001)

    Article  CAS  Google Scholar 

  12. S. Ohsaki, K. Hono, H. Hidaka, S. Takaki, Scripta Mater. 52, 271 (2005)

    Article  CAS  Google Scholar 

  13. Y. Xu, M. Umemoto, K. Tsuchiya, Mater. Trans. 9, 2205 (2002)

    Article  Google Scholar 

  14. Z.G. Liu, H.J. Fecht, M. Umemoto, Mat. Sci. Eng. A375–377, 839 (2004)

    Google Scholar 

  15. A.V. Korznikov, Yu.V. Ivanisenko, D.V. Laptionok, I.M. Safarov, V.P. Pilyugin, R.Z. Valiev, Nanostructured Mater. 4, 159 (1994)

    Article  CAS  Google Scholar 

  16. V.A. Shabashov, L.G. Korshunov, A.G. Mukoseev, V.V. Sagaradze, A.V. Makarov, V.P. Pilyugin, S.I. Novikov, N.F. Vildanova, Mater. Sci. Eng. A346, 196 (2003)

    CAS  Google Scholar 

  17. D. Blavette, A. Bostel, J.M. Sarrau, B. Deconihout, A. Menand, Nature 363, 432 (1993)

    Article  ADS  CAS  Google Scholar 

  18. E. Bémont, A. Bostel, M. Bouet, G. Da Costa, S. Chambreland, B. Deconihout, K. Hono, Ultramicroscopy 95, 231 (2003)

    Article  PubMed  Google Scholar 

  19. G. Da Costa, F. Vurpillot, A. Bostel, M. Bouet, B. Deconihout, Rev. Sci. Inst. 76, 013304 (2005)

    Article  ADS  CAS  Google Scholar 

  20. M.K. Miller, K.F. Russell, G.B. Thompson, Ultramicroscopy 102, 287 (2005)

    Article  PubMed  CAS  Google Scholar 

  21. A. Menand, E. Cadel, C. Pareige, D. Blavette, Ultramicroscopy 78, 63 (1999)

    Article  CAS  Google Scholar 

  22. Yu. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.J. Fecht, Acta Mater. 54, 1659 (2006)

    Article  CAS  Google Scholar 

  23. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, B. Baudelet, Acta Mater. 44, 4705 (1996)

    Article  CAS  Google Scholar 

  24. I. MacLaren, Yu. Ivanisenko, H.-J. Fecht, X. Sauvage, R.Z. Valiev, In Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, T.C. Lowe. [Eds.] Ultrafine Grained Materials IV. Proceedings. 2006 TMS Annual Meeting, San-Antonio, USA, March 18–21, 2006. TMS (The Minerals, Metals & Materials Society)

    Google Scholar 

  25. Yu. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.-J. Fecht, Sol. St. Phen. 114, 133 (2006)

    Article  CAS  Google Scholar 

  26. X. Sauvage, Yu. Ivanisenko, J. Mater. Sci. 42, 1615 (2007)

    Article  ADS  CAS  Google Scholar 

  27. X. Sauvage, J. Copreaux, F. Danoix, D. Blavette, Phil. Mag. A 80, 781 (2000)

    Article  ADS  CAS  Google Scholar 

  28. H.G. Read, W.T. Reynolds, K. Hono, T. Tarui, Scripta Mater 37, 1221 (1997)

    Article  CAS  Google Scholar 

  29. M.H. Hong, W.T. Reynolds, T. Tarui, K. Hono, Met. Mater. Trans. 30A, 717 (1999)

    CAS  Google Scholar 

  30. X. Sauvage, N. Guelton, D. Blavette, Scripta Mater 46, 459 (2002)

    Article  CAS  Google Scholar 

  31. N. Maruyama, T. Tarui, H. Tashiro, Scripta Mater 46, 599 (2002)

    Article  CAS  Google Scholar 

  32. S. Ohsaki, K. Hono, H. Hidaka, S. Takaki, Scripta Mater. 52, 271 (2005)

    Article  CAS  Google Scholar 

  33. Yu. Ivanisenko, I. MacLaren, R.Z. Valiev, H.-J. Fecht, Adv. Eng. Mater. 7, 1011 (2005)

    Article  CAS  Google Scholar 

  34. G. Langford, Metal. Trans. 8A, 861 (1977)

    CAS  Google Scholar 

  35. G. Martin, P. Bellon, Sol. State Phys. 50, 189 (1996)

    Article  MATH  Google Scholar 

  36. C. Suryanarayana, Progr. Mat. Sci. 40, 1 (2001)

    Article  Google Scholar 

  37. S.K. Pabi, J. Joardar, B.S. Murty, PINSA 1, 1 (2001)

    Google Scholar 

  38. A.Y. Badmos, H.K.D.H. Bhadeshia, Metal. Trans. 28A, 2189 (1997)

    CAS  Google Scholar 

  39. J. Weissmüller, J.W. Cahn, Acta Mater. 45, 1899 (1997)

    Article  Google Scholar 

  40. Yu.V. Ivanisenko, W. Lojkowski, R.Z. Valiev, H.-J. Fecht, Sol. State Phen. 94, 45 (2003)

    Article  CAS  Google Scholar 

  41. L. Battezzati, M. Baricco, S. Curiotto, Acta Mater. 53, 1849 (2005)

    Article  CAS  Google Scholar 

  42. F.X. Kayser, Y. Sumitomo, J. Phase Equilibria 18, 458 (1997)

    Article  CAS  Google Scholar 

  43. N.V. Medvedeva, L.E. Karkina, A.L. Ivanovskiy, Phys. Met. Metallogr. 96, 16 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivanisenko, Y., Sauvage, X., MacLaren, I., Fecht, H.J. (2009). Nanostructuring and Dissolution of Cementite in Pearlitic Steels During Severe Plastic Deformation. In: Hahn, H., Sidorenko, A., Tiginyanu, I. (eds) Nanoscale Phenomena. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00708-8_5

Download citation

Publish with us

Policies and ethics