Skip to main content

Electronically Tunable Nanostructures: Metals and Conducting Oxides

  • Chapter
  • First Online:
Nanoscale Phenomena

Part of the book series: NanoScience and Technology ((NANO))

  • 922 Accesses

Abstract

Electric field-induced reversible tuning of physical properties, as opposed to property modification via irreversible variation in microstructure of materials, is discussed in this article. The foremost example of external field-controlled electronic transport of a material is the “field effect transistors (FET).” However, the possibilities of tuning the macroscopic properties of materials with high charge carrier density have not been studied extensively. Large free carrier concentration in metals and high conducting oxides, however, can be of interest for specific applications. Despite the fact that the screening lengths of metals are extremely small, macroscopic property modulation can still be achieved via extremely small nanostructures (with very high surface-to-volume ratio). Moreover, electrochemical gating offers high surface charge density. While selected examples of tunable mechanical and magnetic properties of metals are cited, surface-charge-induced variation in electronic transport of metals (for both nanoporous and planar geometry) and high conducting transparent oxides are discussed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Gleiter, J. Weissmüller, O. Wollersheim, R. Würschum, Acta Mater. 49, 737 (2001)

    Article  CAS  Google Scholar 

  2. K. Kempa, Surf. Sci. 157, L323 (1985)

    Article  ADS  CAS  Google Scholar 

  3. M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, D. Givord, Science 315, 349 (2007)

    Article  PubMed  ADS  CAS  Google Scholar 

  4. C. Lemier, S. Ghosh, R.N. Viswanath, G.-T. Fei, J. Weissmüller, Mater. Res. Soc. Symp. Proc. 876E, R2.6.1 (2005)

    Google Scholar 

  5. A.J. Forty, Nature 282, 597 (1979)

    Article  ADS  CAS  Google Scholar 

  6. S. Parida, D. Kramer, C.A. Volkert, H. Rösner, J. Erlebacher, J. Weissmüller, Phys. Rev. Lett. 97, 035504 (2006)

    Article  PubMed  ADS  CAS  Google Scholar 

  7. J. Erlebacher, J. Electrochem. Soc. 151, C614 (2004)

    Article  CAS  Google Scholar 

  8. J. Weissmüller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Würschum, H. Gleiter, Science 300, 312 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  9. D. Kramer, R.N. Viswanath, J. Weissmüller, Nano Lett. 4, 793 (2004)

    Article  ADS  CAS  Google Scholar 

  10. H. Gleiter, Scripta Mater. 44, 1161 (2000)

    Google Scholar 

  11. H. Drings, R.N. Viswanath, D. Kramer, C. Lemier, J. Weissmüller, R. Würschum, Appl. Phys. Lett. 88, 253103 (2006)

    Article  ADS  CAS  Google Scholar 

  12. M. Sagmeister, U. Brossmann, S. Landgraf, R. Würschum, Phys. Rev. Lett. 96, 156601 (2006)

    Article  PubMed  ADS  CAS  Google Scholar 

  13. A.K. Mishra, C. Bansal, H. Hahn, J. Appl. Phys. 103, 094308 (2008)

    Article  ADS  CAS  Google Scholar 

  14. R.I. Tucceri, D. Posadas, J. Electroanal. Chem. 191, 387 (1985)

    Article  CAS  Google Scholar 

  15. R. I. Tucceri, D. Posadas, J. Electroanal. Chem. 283, 159 (1990)

    Article  CAS  Google Scholar 

  16. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders International Edition, Japan, 1981), p. 7

    Google Scholar 

  17. S. Dasgupta, R. Kruk, D. Ebke, A. Hütten, C. Bansal, H. Hahn, J. Appl. Phys. 104, 103707 (2008)

    Article  ADS  CAS  Google Scholar 

  18. P. Gies, R.R. Gerhardts, Phys. Rev. B 33, 982 (1986)

    Article  ADS  CAS  Google Scholar 

  19. K. Fuchs, Proc. Camb. Philos. Soc. 34, 100 (1938)

    Article  CAS  Google Scholar 

  20. E.H. Sondheimer, Adv. Phys. 1, 1 (1952)

    Article  ADS  Google Scholar 

  21. C. Durkan, M.E. Welland, Phys. Rev. B 61, 215 (2000)

    Article  Google Scholar 

  22. M.A. Schneider, M. Wenderoth, A.J. Heinrich, M.A. Rosentreter, R.G. Ulbrich, Appl. Phys. Lett. 69, 1327 (1996)

    Article  ADS  CAS  Google Scholar 

  23. A. Theophilou, A. Modinos, Phys. Rev. B 6, 801 (1972)

    Article  ADS  CAS  Google Scholar 

  24. J. Ederth, P. Johnsson, G.A. Niklasson, A. Hoel, A. Hultåker, P. Heszler, C.G. Granqvist, A.R. van Doorn, M.J. Jongerius, D. Burgard, Phys. Rev. B 68, 155410 (2003)

    Google Scholar 

  25. J. Ederth, G.A. Niklasson, A. Hultåker, P. Heszler, C.G. Granqvist, A.R. van Doorn, M.J. Jongerius, D. Burgard, J. Appl. Phys. 93, 984 (2003)

    Article  ADS  CAS  Google Scholar 

  26. S. Dasgupta, S. Gottschalk, R. Kruk, H. Hahn, Nanotechnology 19, 435203 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dasgupta, S., Kruk, R., Hahn, H. (2009). Electronically Tunable Nanostructures: Metals and Conducting Oxides. In: Hahn, H., Sidorenko, A., Tiginyanu, I. (eds) Nanoscale Phenomena. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00708-8_12

Download citation

Publish with us

Policies and ethics