Skip to main content

Single-Atom Transistors: Switching an Electrical Current with Individual Atoms

  • Chapter
  • First Online:
Nanoscale Phenomena

Part of the book series: NanoScience and Technology ((NANO))

  • 926 Accesses

Abstract

Single-atom transistors are a novel approach opening intriguing perspectives for quantum electronics and logics at room temperature. They are based on the stable and reproducible operation of atomic-scale switches, which allow us to open and close an electrical circuit by the controlled reconfiguration of silver atoms within an atomic-scale junction. We demonstrate the operation of such atomic quantum switches, and discuss in more detail the process during which these switches are formed by repeated electrochemical deposition and dissolution. Only after repeated deposition/dissolution cycles, a bistable contact is formed on the atomic scale, which allows to switch between a configuration where the contact is closed, the conducting state or “on”-state, and a configuration where the contact is open, the nonconducting state or “off”-state. The controlled fabrication of these well-ordered atomic-scale metallic contacts is of great interest: it is expected that the experimentally observed high percentage of point contacts with a conductance at noninteger multiples of the conductance quantum G 0 = 2e 2h( ≈ 1 ∕ 12. 9 kΩ) in conventional experiments with simple metals is correlated with defects resulting from the fabrication process. Our combined electrochemical deposition and annealing method allows the controlled fabrication of point contacts with preselectable integer quantum conductance. The resulting conductance measurements on silver point contacts are compared with tight-binding-like conductance calculations of modeled idealized junction geometries between two silver crystals with a predefined number of contact atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.-Q. Xie, Ch. Obermair, Th. Schimmel, in Nanoscale Devices – Fundamentals and Applications, ed. by R. Gross et al., (Springer, New York, 2006), p. 153

    Google Scholar 

  2. F.-Q. Xie, R. Maul, Ch. Obermair, E.B. Starikov, W. Wenzel, G. Schön, Th. Schimmel, Appl. Phys. Lett. 93(4), 3103 (2008)

    Article  CAS  Google Scholar 

  3. A. Nitzan, M.A. Ratner, Science 300, 1384 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  4. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  5. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J. M. Tour, Science 278, 252 (1997)

    Article  CAS  Google Scholar 

  6. X.D. Cui, Science 294, 571 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  7. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  ADS  CAS  Google Scholar 

  8. C.Z. Li, A. Bogozi, W. Huang, N.J. Tao, Nanotechnology 10, 221 (1999)

    Article  ADS  Google Scholar 

  9. F.-Q. Xie, L. Nittler, Ch. Obermair, Th. Schimmel, Phys. Rev. Lett. 93, 128303 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  10. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  11. F. Xie, R. Maul, A. Augenstein, Ch. Obermair, E.B. Starikov, W. Wenzel, G. Schön, Th. Schimmel, Nano Lett. 8(12), 4493 (2008)

    Article  PubMed  ADS  CAS  Google Scholar 

  12. N. Agraït, A. Levy Yeyati, J.M. van Ruitenbeek, Phys. Rep. 377, 81 (2003)

    Article  ADS  CAS  Google Scholar 

  13. N. Agraït, J.G. Rodrigo, S. Vieira, Phys. Rev. B 47, 12345 (1993)

    Article  ADS  Google Scholar 

  14. J. I. Pascual, Phys. Rev. Lett. 71, 1852 (1993)

    Article  PubMed  ADS  CAS  Google Scholar 

  15. J.M. Krans, J.M. van Ruitenbeek, V.V. Fisun, I.K. Yanson, and L.J. de Jongh, Nature 375, 767 (1995)

    Article  ADS  CAS  Google Scholar 

  16. E. Scheer, Nature 394, 154 (1998)

    Article  ADS  CAS  Google Scholar 

  17. C.Z. Li, N.J. Tao, Appl. Phys. Lett. 72, 894 (1998)

    Article  ADS  CAS  Google Scholar 

  18. C.Z. Li, A. Bogozi, W. Huang, N.J. Tao, Nanotechnology 10, 221 (1999)

    Article  ADS  Google Scholar 

  19. A.F. Morpurgo, C.M. Marcus, D.B. Robinson, Appl. Phys. Lett. 74, 2084 (1999)

    Article  ADS  CAS  Google Scholar 

  20. C.Z. Li, H.X. He, N.J-Tao, Appl. Phys. Lett. 77, 3995 (2000)

    Google Scholar 

  21. J. Li, T. Kanzaki, K. Murakoshi, Y. Nakato, Appl. Phys. Lett. 81, 123 (2002)

    Article  ADS  CAS  Google Scholar 

  22. F. Elhoussine, S. Mátéfi-Tempfli, A. Encinas, L. Piraux, Appl. Phys. Lett. 81, 1681 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Ch. Obermair, R. Kniese, F.-Q. Xie, Th. Schimmel, in Molecular Nanowires and Other Quantum Objects, ed. by A.S. Alexandrov, J. Demsar, I.K. Yanson, (Kluwer Academic Publishers, The Netherlands, 2004), p. 233

    Google Scholar 

  24. D.M. Eigler, C.P. Lutz, W.E. Rudge, Nature 352, 600 (1991)

    Article  ADS  CAS  Google Scholar 

  25. H. Fuchs, Th. Schimmel, Adv. Mater. 3, 112 (1991)

    Article  CAS  Google Scholar 

  26. F.-Q. Xie, Ch. Obermair, Th. Schimmel, Solid State Commun. 132, 437 (2004)

    Article  ADS  CAS  Google Scholar 

  27. M. Brandbyge, K.W. Jacobsen, J.K. Norskov, Phys. Rev. B 55, 2637 (1997)

    Article  ADS  CAS  Google Scholar 

  28. J.C. Cuevas, A. Levy Yeyati, A. Martín-Rodero, Phys. Rev. Lett. 80, 1066 (1998)

    Article  ADS  CAS  Google Scholar 

  29. C.E. Bach, M. Giesen, H. Ibach, T.L. Einstein, Phys. Rev. Lett. 78, 4225 (1997)

    Article  ADS  CAS  Google Scholar 

  30. C. Friesen, N. Dimitrov, R.C. Cammarata, K. Sieradzki, Langmuir 17, 807 (2001)

    Article  CAS  Google Scholar 

  31. Gmelin’s Handbook of Inorganic Chemistry, 8. edn. (Verlag Chemie, Weinheim, 1973), Silver, Part A4, p. 220

    Google Scholar 

  32. X. Guang-Can, J. Cluster Sci. 17, 457 (2006)

    Article  CAS  Google Scholar 

  33. J. Heurich, J.-C. Cuevas, W. Wenzel, G. Schön, Phys. Rev. Lett. 88, 256803 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  34. P. Damle, A.W. Ghosh, S. Datta, Chem. Phys. 281, 171 (2002)

    Article  ADS  CAS  Google Scholar 

  35. R. Hoffmann, J. Chem. Phys. 39, 1397 (1963)

    Article  ADS  CAS  Google Scholar 

  36. V. Rodrigues, J. Bettini, A.R. Rocha, L.G.C. Rego, D. Ugarte, Phys. Rev. B 65, 153402 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Obermair, C., Xie, F., Maul, R., Wenzel, W., Schön, G., Schimmel, T. (2009). Single-Atom Transistors: Switching an Electrical Current with Individual Atoms. In: Hahn, H., Sidorenko, A., Tiginyanu, I. (eds) Nanoscale Phenomena. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00708-8_11

Download citation

Publish with us

Policies and ethics