Skip to main content

Terminal Sequence Induction via Games

  • Conference paper
Logic, Language, and Computation (TbiLLC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5422))

Included in the following conference series:

Abstract

In this paper we provide an alternative proof of a fundamental theorem by Worrell stating that the (possibly infinite) behaviour of an F-coalgebra state can be faithfully approximated by the collection of its finite, n-step behaviours, provided that F:SetSet is a finitary set functor. The novelty of our work lies in our proof technique: our proof uses a certain graph game that generalizes Baltag’s F-bisimilarity game. Phrased in terms of games, our main technical result is that behavioural equivalence on F-coalgebras for a finitary set functor F can be captured by a two-player graph game in which at every position a player has only finitely many moves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories, The Joy of Cats. John Wiley and Sons, Inc., Chichester (1990)

    MATH  Google Scholar 

  2. Baltag, A.: A logic for coalgebraic simulation. In: Reichel, H. (ed.) Proceedings of the Workshop on Coalgebraic Methods in Computer Science (CMCS). Electronic Notes in Theoretical Computer Science, vol. 33 (2000)

    Google Scholar 

  3. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science (FoCS 1991), pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  4. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  5. Gumm, H.P., Schröder, T.: Types and coalgebraic structure. Algebra universalis 53, 229–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 279–293. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Moss, L.S.: Coalgebraic Logic. Annals of Pure and Applied Logic 96, 277–317 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mostowski, A.: Games with forbidden positions. Technical Report 78, Instytut Matematyki, Uniwersytet Gdański, Poland (1991)

    Google Scholar 

  9. Rutten, J.J.M.M.: Relators and Metric Bisimulation (Extended Abstract). Electronic Notes in Theoretical Computer Science 11, 1–7 (1998)

    Article  Google Scholar 

  10. Rutten, J.J.M.M.: Universal coalgebra: A theory of systems. Theoretical Computer Science 249, 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rutten, J.J.M.M., de Vink, E.P.: Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoretical Computer Science 221(1–2), 271–293 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Schröder, L.: Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. Theoretical Computer Science 390, 230–247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Venema, Y.: Algebras and coalgebras. In: Handbook of Modal Logic, vol. 3, pp. 331–426. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  14. Venema, Y.: Automata and fixed point logic: a coalgebraic perspective. Information and Computation 204, 637–678 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Worrell, J.: On the final sequence of a finitary set functor. Theoretical Computer Science 338(1–3), 184–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kupke, C. (2009). Terminal Sequence Induction via Games. In: Bosch, P., Gabelaia, D., Lang, J. (eds) Logic, Language, and Computation. TbiLLC 2007. Lecture Notes in Computer Science(), vol 5422. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00665-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00665-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00664-7

  • Online ISBN: 978-3-642-00665-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics