Receptor- and Reactive Intermediate-Mediated Mechanisms of Teratogenesis

  • Peter G. WellsEmail author
  • Crystal J. J. Lee
  • Gordon P. McCallum
  • Julia Perstin
  • Patricia A. Harper
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 196)


Drugs and environmental chemicals can adversely alter the development of the fetus at critical periods during pregnancy, resulting in death, or in structural and functional birth defects in the surviving offspring. This process of teratogenesis may not be evident until a decade or more after birth. Postnatal functional abnormalities include deficits in brain function, a variety of metabolic diseases, and cancer. Due to the high degree of fetal cellular division and differentiation, and to differences from the adult in many biochemical pathways, the fetus is highly susceptible to teratogens, typically at low exposure levels that do not harm the mother. Insights into the mechanisms of teratogenesis come primarily from animal models and in vitro systems, and involve either receptor-mediated or reactive intermediate-mediated processes. Receptor-mediated mechanisms involving the reversible binding of xenobiotic substrates to a specific receptor are exemplified herein by the interaction of the environmental chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or “dioxin”) with the cytosolic aryl hydrocarbon receptor (AHR), which translocates to the nucleus and, in association with other proteins, binds to AH-responsive elements (AHREs) in numerous genes, initiating changes in gene transcription that can perturb development. Alternatively, many xenobiotics are bioactivated by fetal enzymes like the cytochromes P450 (CYPs) and prostaglandin H synthases (PHSs) to highly unstable electrophilic or free radical reactive intermediates. Electrophilic reactive intermediates can covalently (irreversibly) bind to and alter the function of essential cellular macromolecules (proteins, DNA), causing developmental anomalies. Free radical reactive intermediates can enhance the formation of reactive oxygen species (ROS), resulting in oxidative damage to cellular macromolecules and/or altered signal transduction. The teratogenicity of reactive intermediates is determined to a large extent by the balance among embryonic and fetal pathways of xenobiotic bioactivation, detoxification of the xenobiotic reactive intermediate, detoxification of ROS, and repair of oxidative macromolecular damage.


Aryl hydrocarbon receptor Dioxin Reactive intermediates Oxidative stress Teratogenesis 



Antiepileptic drug


Aryl hydrocarbon receptor


Aryl hydrocarbon responsive element


Aryl hydrocarbon receptor nuclear translocator


Ataxia telangiectasia mutated


All-trans retinoic acid




Constitutive androstane receptor


Cytochrome P450


Glucose-6-phosphate dehydrogenase


Cockayne Syndrome B




Glutathione S-transferase




Nuclear factor kappa B


Oxoguanine glycosylase 1


Prostaglandin H synthase


Pregnane X receptor


Reactive nitrogen species


Reactive oxygen species


Retinoic acid receptor


Superoxide dismutase


2,3,7,8-Tetrachlorodibenzo-p-dioxin (“dioxin”)





Research from the Wells laboratory was supported by grants from the Canadian Institutes of Health Research (CIHR), the National Cancer Institute of Canada and the National Institute of Environmental Health Sciences (No. R21-ES013848). Research from the Harper laboratory was supported by grants from the CIHR.


  1. Alaluusua S, Lukinmaa PL (2006) Developmental dental toxicity of dioxin and related compounds–a review. Int Dent J 56:323–331PubMedCrossRefGoogle Scholar
  2. Birnbaum LS, Tuomisto J (2000) Non-carcinogenic effects of TCDD in animals. Food Addit Contam 17:275–288PubMedCrossRefGoogle Scholar
  3. Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R, Sheehan DM (2000) The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 54:138–153PubMedCrossRefGoogle Scholar
  4. Boutros PC, Yan R, Moffat ID, Pohjanvirta R, Okey AB (2008) Transcriptomic responses to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) in liver: comparison of rat and mouse. BMC Genom 9:419CrossRefGoogle Scholar
  5. Brunnberg S, Andersson P, Lindstam M, Paulson I, Poellinger L, Hanberg A (2006) The constitutively active Ah receptor (CA-Ahr) mouse as a potential model for dioxin exposure–effects in vital organs. Toxicology 224:191–201PubMedCrossRefGoogle Scholar
  6. Bunger MK, Moran SM, Glover E, Thomae TL, Lahvis GP, Lin BC, Bradfield CA (2003) Resistance to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin toxicity and abnormal liver development in mice carrying a mutation in the nuclear localization sequence of the aryl hydrocarbon receptor. J Biol Chem 278:17767–17774PubMedCrossRefGoogle Scholar
  7. Bunger MK, Glover E, Moran SM, Walisser JA, Lahvis GP, Hsu EL, Bradfield CA (2008) Abnormal liver development and resistance to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin toxicity in mice carrying a mutation in the DNA-binding domain of the aryl hydrocarbon receptor. Toxicol Sci 106:83–92PubMedCrossRefGoogle Scholar
  8. Chan WK, Yao G, Gu YZ, Bradfield CA (1999) Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation. J Biol Chem 274:12115–12123PubMedCrossRefGoogle Scholar
  9. Chang X, Fan Y, Karyala S, Schwemberger S, Tomlinson CR, Sartor MA, Puga A (2007) Ligand-independent regulation of transforming growth factor beta1 expression and cell cycle progression by the aryl hydrocarbon receptor. Mol Cell Biol 27:6127–6139PubMedCrossRefGoogle Scholar
  10. Chesire DR, Dunn TA, Ewing CM, Luo J, Isaacs WB (2004) Identification of aryl hydrocarbon receptor as a putative Wnt/beta-catenin pathway target gene in prostate cancer cells. Cancer Res 64:2523–2533PubMedCrossRefGoogle Scholar
  11. Choi EJ, Toscano DG, Ryan JA, Riedel N, Toscano WA Jr (1991) Dioxin induces transforming growth factor-alpha in human keratinocytes. J Biol Chem 266:9591–9597PubMedGoogle Scholar
  12. Choi SS, Miller MA, Harper PA (2006) In utero exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin induces amphiregulin gene expression in the developing mouse ureter. Toxicol Sci 94:163–174PubMedCrossRefGoogle Scholar
  13. Collins MD, Mao GE (1999) Teratology of retinoids. Annu Rev Pharmacol Toxicol 39:399–430PubMedCrossRefGoogle Scholar
  14. Couture LA, Abbott BD, Birnbaum LS (1990) A critical review of the developmental toxicity and teratogenicity of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin: recent advances toward understanding the mechanism. Teratology 42:619–627PubMedCrossRefGoogle Scholar
  15. Davis JW Jr, Burdick AD, Lauer FT, Burchiel SW (2003) The aryl hydrocarbon receptor antagonist, 3'methoxy-4'nitroflavone, attenuates 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-dependent regulation of growth factor signaling and apoptosis in the MCF-10A cell line. Toxicol Appl Pharmacol 188:42–49PubMedCrossRefGoogle Scholar
  16. Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334PubMedCrossRefGoogle Scholar
  17. Duncan DM, Burgess EA, Duncan I (1998) Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev 12:1290–1303PubMedCrossRefGoogle Scholar
  18. Ema M, Ohe N, Suzuki M, Mimura J, Sogawa K, Ikawa S, Fujii-Kuriyama Y (1994) Dioxin binding activities of polymorphic forms of mouse and human arylhydrocarbon receptors. J Biol Chem 269:27337–27343PubMedGoogle Scholar
  19. Fantel AG (1996) Reactive oxygen species in developmental toxicity: review and hypothesis. Teratology 53:196–217PubMedCrossRefGoogle Scholar
  20. Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS, Kimura S, Nebert DW, Rudikoff S, Ward JM, Gonzalez FJ (1995) Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–726PubMedCrossRefGoogle Scholar
  21. Frericks M, Burgoon LD, Zacharewski TR, Esser C (2008) Promoter analysis of TCDD-inducible genes in a thymic epithelial cell line indicates the potential for cell-specific transcription factor crosstalk in the AhR response. Toxicol Appl Pharmacol 232:268–279PubMedCrossRefGoogle Scholar
  22. Gaido KW, Maness SC, Leonard LS, Greenlee WF (1992) 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin-dependent regulation of transforming growth factors-alpha and -beta 2 expression in a human keratinocyte cell line involves both transcriptional and post-transcriptional control. J Biol Chem 267:24591–24595PubMedGoogle Scholar
  23. Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561PubMedCrossRefGoogle Scholar
  24. Hahn ME (2001) Dioxin toxicology and the aryl hydrocarbon receptor: insights from fish and other non-traditional models. Mar Biotechnol (NY) 3:S224–S238CrossRefGoogle Scholar
  25. Hahn ME (2002) Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact 141:131–160PubMedCrossRefGoogle Scholar
  26. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150PubMedCrossRefGoogle Scholar
  27. Halliwell B, Gutteridge LMC (1999) Free radicals in biology and medicine. Oxford University Press, New YorkGoogle Scholar
  28. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, OxfordGoogle Scholar
  29. Handley-Goldstone HM, Grow MW, Stegeman JJ (2005) Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos. Toxicol Sci 85:683–693PubMedCrossRefGoogle Scholar
  30. Hansen JM (2006) Oxidative stress as a mechanism of teratogenesis. Birth Defects Res Part C: Embryo Today Rev 78:293–307CrossRefGoogle Scholar
  31. Harper PA, Riddick DS, Okey AB (2006) Regulating the regulator: factors that control levels and activity of the aryl hydrocarbon receptor. Biochem Pharmacol 72:267–279PubMedCrossRefGoogle Scholar
  32. Hassoun EA, Stohs SJ (1996) Comparative teratological studies on TCDD, endrin and lindane in C57BL/6J and DBA/2J mice. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113:393–398PubMedCrossRefGoogle Scholar
  33. Hassoun EA, Walter AC, Alsharif NZ, Stohs SJ (1997) Modulation of TCDD-induced fetotoxicity and oxidative stress in embryonic and placental tissues of C57BL/6J mice by vitamin E succinate and ellagic acid. Toxicology 124:27–37PubMedCrossRefGoogle Scholar
  34. Hernandez-Ochoa I, Karman BN, Flaws JA (2009) The role of the aryl hydrocarbon receptor in the female reproductive system. Biochem Pharmacol 77:547–559PubMedCrossRefGoogle Scholar
  35. Hines RN (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 118:250–267PubMedCrossRefGoogle Scholar
  36. Hitchler MJ, Domann FE (2007) An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 43:1023–1036PubMedCrossRefGoogle Scholar
  37. Hu W, Sorrentino C, Denison MS, Kolaja K, Fielden MR (2007) Induction of cyp1a1 is a nonspecific biomarker of aryl hydrocarbon receptor activation: results of large scale screening of pharmaceuticals and toxicants in vivo and in vitro. Mol Pharmacol 71:1475–1486PubMedCrossRefGoogle Scholar
  38. Ivnitski-Steele ID, Sanchez A, Walker MK (2004) 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin reduces myocardial hypoxia and vascular endothelial growth factor expression during chick embryo development. Birth Defects Res A Clin Mol Teratol 70:51–58PubMedCrossRefGoogle Scholar
  39. Jonsson ME, Orrego R, Woodin BR, Goldstone JV, Stegeman JJ (2007) Basal and 3, 3', 4, 4', 5-pentachlorobiphenyl-induced expression of cytochrome P450 1A, 1B and 1C genes in zebrafish. Toxicol Appl Pharmacol 221:29–41PubMedCrossRefGoogle Scholar
  40. Juchau MR (1981) The biochemical basis of chemical teratogenesis. Elsevier/North Holland, New YorkGoogle Scholar
  41. Juchau MR (1989) Bioactivation in chemical teratogenesis. Annu Rev Pharmacol Toxicol 29:165–187PubMedCrossRefGoogle Scholar
  42. Juchau MR, Lee QP, Fantel AG (1992) Xenobiotic biotransformation/bioactivation in organogenesis-stage conceptal tissues: implications for embryotoxicity and teratogenesis. Drug Metab Rev 24:195–238PubMedCrossRefGoogle Scholar
  43. Juchau MR, Boutelet-Bochan H, Huang Y (1998) Cytochrome P450-dependent biotransformation of xenobiotics in human and rodent embryonic tissues. Drug Metab Rev 30:541–568PubMedCrossRefGoogle Scholar
  44. Kakizaki S, Yamazaki Y, Takizawa D, Negishi M (2008) New insights on the xenobiotic-sensing nuclear receptors in liver diseases–CAR and PXR. Curr Drug Metab 9:614–621PubMedCrossRefGoogle Scholar
  45. Kasapinovic S, McCallum G, Wiley MJ, Wells PG (2004) The peroxynitrite pathway in development: phenytoin and benzo[a]pyrene embryopathies in inducible nitric oxide synthase (iNOS) knockout mice. Free Radic Biol Med 37(11):1703–1711Google Scholar
  46. Kawajiri K, Fujii-Kuriyama Y (2007) Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Arch Biochem Biophys 464:207–212PubMedCrossRefGoogle Scholar
  47. Kennedy JC, Memet S, Wells PG (2004) Antisense evidence for NF-kB-dependent embryopathies initiated by phenytoin-enhanced oxidative stress. Mol Pharmacol 66(3):404–412Google Scholar
  48. Khan S, Barhoumi R, Burghardt R, Liu S, Kim K, Safe S (2006) Molecular mechanism of inhibitory aryl hydrocarbon receptor-estrogen receptor/Sp1 cross talk in breast cancer cells. Mol Endocrinol 20:2199–2214PubMedCrossRefGoogle Scholar
  49. Khan S, Liu S, Stoner M, Safe S (2007) Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells. Toxicol Appl Pharmacol 223:28–38PubMedCrossRefGoogle Scholar
  50. Kim MD, Jan LY, Jan YN (2006) The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. Genes Dev 20:2806–2819PubMedCrossRefGoogle Scholar
  51. Kininis M, Kraus WL (2008) A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nucl Recept Signal 6:e005PubMedGoogle Scholar
  52. Knobloch J, Rüther U (2008) Shedding light on an old mystery: thalidomide suppresses survival pathways to induce limb defects. Cell Cycle 7:1121–1127PubMedCrossRefGoogle Scholar
  53. Kopf PG, Huwe JK, Walker MK (2008) Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovasc Toxicol 8:181–193PubMedCrossRefGoogle Scholar
  54. Kovacic P, Pozos RS (2006) Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry and other medical implications. Birth Defects Res Part C: Embryo Today Rev 78:333–344CrossRefGoogle Scholar
  55. Kraemer SA, Arthur KA, Denison MS, Smith WL, DeWitt DL (1996) Regulation of prostaglandin endoperoxide H synthase-2 expression by 2, 3, 7, 8,-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys 330:319–328PubMedCrossRefGoogle Scholar
  56. Kransler KM, McGarrigle BP, Olson JR (2007) Comparative developmental toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the hamster, rat and guinea pig. Toxicology 229: 214–225PubMedCrossRefGoogle Scholar
  57. Kretschmer XC, Baldwin WS (2005) CAR and PXR: xenosensors of endocrine disrupters? Chem Biol Interact 155:111–128PubMedCrossRefGoogle Scholar
  58. Lahvis GP, Bradfield CA (1998) Ahr null alleles: distinctive or different? Biochem Pharmacol 56:781–787PubMedCrossRefGoogle Scholar
  59. Lanz RB, Jericevic Z, Zuercher WJ, Watkins C, Steffen DL, Margolis R, McKenna NJ (2006) Nuclear receptor signaling atlas ( hyperlinking the nuclear receptor signaling community. Nucleic Acids Res 34:D221–D226PubMedCrossRefGoogle Scholar
  60. Lin TM, Ko K, Moore RW, Buchanan DL, Cooke PS, Peterson RE (2001) Role of the aryl hydrocarbon receptor in the development of control and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-exposed male mice. J Toxicol Environ Health A 64:327–342PubMedCrossRefGoogle Scholar
  61. Lin BC, Nguyen LP, Walisser JA, Bradfield CA (2008) A hypomorphic allele of aryl hydrocarbon receptor-associated protein-9 produces a phenocopy of the AHR-null mouse. Mol Pharmacol 74:1367–1371PubMedCrossRefGoogle Scholar
  62. Mark M, Ghyselinck NB, Chambon P (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46:451–480PubMedCrossRefGoogle Scholar
  63. Mathew LK, Simonich MT, Tanguay RL (2009) AHR-dependent misregulation of Wnt signaling disrupts tissue regeneration. Biochem Pharmacol 77:498–507PubMedCrossRefGoogle Scholar
  64. Matthews J, Gustafsson JA (2006) Estrogen receptor and aryl hydrocarbon receptor signaling pathways. Nucl Recept Signal 4:e016PubMedGoogle Scholar
  65. Matthews JB, Twomey K, Zacharewski TR (2001) In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors alpha and beta. Chem Res Toxicol 14:149–157PubMedCrossRefGoogle Scholar
  66. Miao W, Hu L, Scrivens PJ, Batist G (2005) Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem 280:20340–20348PubMedCrossRefGoogle Scholar
  67. Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN, Nakao K, Ema M, Sogawa K, Yasuda M, Katsuki M, Fujii-Kuriyama Y (1997) Loss of teratogenic response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 2:645–654PubMedCrossRefGoogle Scholar
  68. Moreau A, Vilarem MJ, Maurel P, Pascussi JM (2008) Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol Pharm 5:35–41PubMedCrossRefGoogle Scholar
  69. Murphy KA, Quadro L, White LA (2007) The intersection between the aryl hydrocarbon receptor (AhR)- and retinoic acid-signaling pathways. Vitam Horm 75:33–67PubMedCrossRefGoogle Scholar
  70. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–23850PubMedCrossRefGoogle Scholar
  71. Neubert et al. (1980) Drug-induced damage in the embryo or fetus. Springer, New York, pp 242–331Google Scholar
  72. Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116PubMedCrossRefGoogle Scholar
  73. Nishimura N, Yonemoto J, Miyabara Y, Fujii-Kuriyama Y, Tohyama C (2005) Altered thyroxin and retinoid metabolic response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in aryl hydrocarbon receptor-null mice. Arch Toxicol 79:260–267PubMedCrossRefGoogle Scholar
  74. NTP (2008) National Toxicology Program – Center for the evaluation of risks to human reproduction monograph on the potential human reproductive and developmental effects of bisphenol A. US Dept. of Health and Human Services. NIH Publication No. 08-5994Google Scholar
  75. Okey AB, Vella LM, Harper PA (1989) Detection and characterization of a low affinity form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. Mol Pharmacol 35:823–830PubMedGoogle Scholar
  76. Parman T, Wiley MJ, Wells PG (1999) Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 5:582–585PubMedCrossRefGoogle Scholar
  77. Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P (2008) The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 48:1–32PubMedCrossRefGoogle Scholar
  78. Patel RD, Kim DJ, Peters JM, Perdew GH (2006) The aryl hydrocarbon receptor directly regulates expression of the potent mitogen epiregulin. Toxicol Sci 89:75–82PubMedCrossRefGoogle Scholar
  79. Peters JM, Narotsky MG, Elizondo G, Fernandez-Salguero PM, Gonzalez FJ, Abbott BD (1999) Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicol Sci 47:86–92PubMedCrossRefGoogle Scholar
  80. Poland A, Palen D, Glover E (1994) Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 46:915–921PubMedGoogle Scholar
  81. Puga A, Ma C, Marlowe JL (2009) The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol 77:713–722PubMedCrossRefGoogle Scholar
  82. Qin H, Powell-Coffman JA (2004) The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. Dev Biol 270:64–75PubMedCrossRefGoogle Scholar
  83. Reichard JF, Dalton TP, Shertzer HG, Puga A (2005) Induction of oxidative stress responses by dioxin and other ligands of the aryl hydrocarbon receptor. Dose Response 3:306–331CrossRefGoogle Scholar
  84. Robinson-Rechavi M, Carpentier AS, Duffraisse M, Laudet V (2001) How many nuclear hormone receptors are there in the human genome? Trends Genet 17:554–556PubMedCrossRefGoogle Scholar
  85. Rogers JM, Kavlock RJ (2008) Developmental toxicology. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, 7th edn, pp 415–451Google Scholar
  86. Ruegg J, Swedenborg E, Wahlstrom D, Escande A, Balaguer P, Pettersson K, Pongratz I (2008) The transcription factor aryl hydrocarbon receptor nuclear translocator functions as an estrogen receptor beta-selective coactivator, and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin. Mol Endocrinol 22:304–316PubMedCrossRefGoogle Scholar
  87. Safe SH (1986) Comparative toxicology and mechanism of action of polychlorinated dibenzo-p-dioxins and dibenzofurans. Annu Rev Pharmacol Toxicol 26:371–399PubMedCrossRefGoogle Scholar
  88. Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA (1996) Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc Natl Acad Sci U S A 93:6731–6736PubMedCrossRefGoogle Scholar
  89. Shertzer HG, Nebert DW, Puga A, Ary M, Sonntag D, Dixon K, Robinson LJ, Cianciolo E, Dalton TP (1998) Dioxin causes a sustained oxidative stress response in the mouse. Biochem Biophys Res Commun 253:44–48PubMedCrossRefGoogle Scholar
  90. Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES, Yamamoto M, Kensler TW (2007) NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol 27:7188–7197PubMedCrossRefGoogle Scholar
  91. Sies H (1985) Oxidative stress. Academic Press, New YorkGoogle Scholar
  92. Thackaberry EA, Nunez BA, Ivnitski-Steele ID, Friggins M, Walker MK (2005) Effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on murine heart development: alteration in fetal and postnatal cardiac growth, and postnatal cardiac chronotropy. Toxicol Sci 88:242–249PubMedCrossRefGoogle Scholar
  93. Tijet N, Boutros PC, Moffat ID, Okey AB, Tuomisto J, Pohjanvirta R (2006) Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol Pharmacol 69:140–153PubMedGoogle Scholar
  94. Uno S, Dalton TP, Sinclair PR, Gorman N, Wang B, Smith AG, Miller ML, Shertzer HG, Nebert DW (2004) Cyp1a1(−/−) male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria. Toxicol Appl Pharmacol 196:410–421PubMedCrossRefGoogle Scholar
  95. Vezina CM, Lin TM, Peterson RE (2009) AHR signaling in prostate growth, morphogenesis, and disease. Biochem Pharmacol 77:566–576PubMedCrossRefGoogle Scholar
  96. vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M, Farabollini F, Guillette LJ Jr, Hauser R, Heindel JJ, Ho SM, Hunt PA, Iguchi T, Jobling S, Kanno J, Keri RA, Knudsen KE, Laufer H, LeBlanc GA, Marcus M, McLachlan JA, Myers JP, Nadal A, Newbold RR, Olea N, Prins GS, Richter CA, Rubin BS, Sonnenschein C, Soto AM, Talsness CE, Vandenbergh JG, Vandenberg LN, Walser-Kuntz DR, Watson CS, Welshons WV, Wetherill Y, Zoeller RT (2007) Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24:131–138Google Scholar
  97. Walisser JA, Bunger MK, Glover E, Harstad EB, Bradfield CA (2004) Patent ductus venosus and dioxin resistance in mice harboring a hypomorphic Arnt allele. J Biol Chem 279:16326–16331PubMedCrossRefGoogle Scholar
  98. Wells (2007) In: Kalant et al. (eds) Principles of medical pharmacology, 7th edn. Elsevier Canada, Toronto, pp 912–930Google Scholar
  99. Wells PG, Winn LM (1996) Biochemical toxicology of chemical teratogenesis. Crit Rev Biochem Mol Biol 31:1–40PubMedCrossRefGoogle Scholar
  100. Wells PG, Winn LM (2009) Chapter 40: The role of biotransformation in developmental toxicity. In: McQueen CA (ed) Comprehensive toxicology, 2nd edn, vol 12, Developmental toxicology (Daston GP and Knudsen TB, eds.). Elsevier, Oxford (in press)Google Scholar
  101. Wells PG, Kim PM, Nicol CJ, Parman T, Winn LM (1997) Chapter 17. Reactive intermediates. In: Kavlock RJ, Daston GP (eds) Drug toxicity in embryonic development, handbook of experimental pharmacology, vol 124, Part I. Springer, Heidelberg, pp 453–518Google Scholar
  102. Wells PG, Mackenzie PI, Roy Chowdhury J, Guillemette C, Gregory PA, Ishii Y, Hansen AJ, Kessler FK, Kim PM, Roy Chowdhury N, Ritter JK (2004) Glucuronidation and the UDP-glucuronosyltransferases in drug therapy and disease. Drug Metab Dispos 32:281–290PubMedCrossRefGoogle Scholar
  103. Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJJ, Perstin J, Preston TJ, Wiley MJ, Wong AW (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits and cancer. Toxicol Sci 108:4–18PubMedCrossRefGoogle Scholar
  104. Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I, Desplan C (2006) Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440:174–180PubMedCrossRefGoogle Scholar
  105. Winn LM, Wells PG (1995) Free radical-mediated mechanisms of anticonvulsant teratogenicity. Eur J Neurol 2:5–29CrossRefGoogle Scholar
  106. Wolff S, Harper PA, Wong JM, Mostert V, Wang Y, Abel J (2001) Cell-specific regulation of human aryl hydrocarbon receptor expression by transforming growth factor-beta(1). Mol Pharmacol 59:716–724PubMedGoogle Scholar
  107. Yu WK, Wells PG (1995) Evidence for lipoxygenase-catalyzed bioactivation of phenytoin to a teratogenic reactive intermediate: In vitro studies using linoleic acid-dependent soybean lipoxygenase, and in vivo studies using pregnant CD-1 mice. Toxicol Appl Pharmacol 131:1–12Google Scholar
  108. Zhang N, Walker MK (2007) Crosstalk between the aryl hydrocarbon receptor and hypoxia on the constitutive expression of cytochrome P4501A1 mRNA. Cardiovasc Toxicol 7:282–290PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter G. Wells
    • 1
    Email author
  • Crystal J. J. Lee
  • Gordon P. McCallum
  • Julia Perstin
  • Patricia A. Harper
  1. 1.Division of Biomolecular Sciences, Faculty of PharmacyUniversity of TorontoTorontoCanada

Personalised recommendations