Skip to main content

Molecular Mechanisms of Adverse Drug Reactions in Cardiac Tissue

  • Chapter
  • First Online:
Adverse Drug Reactions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 196))

Abstract

The myocardium is the target of toxicity for a number of drugs. Based on pharmacological evidence, cellular targets for drugs that produce adverse reactions can be categorized into a number of sites that include the cell membrane-bound receptors, the second messenger system, ionic channels, ionic pumps, and intracellular organelles. Additionally, interference with the neuronal input to the heart can also present a global site where adverse drug effects can manifest themselves. Simply, a drug can interfere with the normal cardiac action by modifying an ion channel function at the plasma membrane level leading to abnormal repolarization and/or depolarization of the heart cells thus precipitating a disruption in the rhythm and causing dysfunction in contractions and/or relaxations of myocytes. It is now recognized that toxic actions of drugs against the myocardium are not exclusive to the antitumor or the so-called cardiac drugs, and many other drugs with diverse chemical structures, such as antimicrobial, antimalarial, antihistamines, psychiatric, and gastrointestinal medications, seem to be capable of severely compromising myocardium function. At present, great emphasis in terms of drug safety is being placed on the interaction of many classes of drugs with the hERG potassium channel in cardiac tissue. The interest in the latter channel stems from the simplified view that drugs that block the hERG potassium channel cause prolongation of the QT interval, and this can cause life-threatening cardiac arrhythmias. Based on the evidence in the current literature, this concept does not seem to always hold true.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad K, Dorian P (2007) Drug-induced QT prolongation and proarrhythmia: an inevitable link? Europace (Suppl 4):iv16–iv22

    Google Scholar 

  • Antzelevitch C (2007) Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace (Suppl 4):iv4–iv15

    Google Scholar 

  • Anyukhovsky EP, Sosunov EA, Rosen MR (1996) Regional differences in electrophysiological properties of epicardium, midmyocardium and endocardium. In vitro and in vivo correlations. Circulation 94:1981–1988

    PubMed  CAS  Google Scholar 

  • Ashraf M, Chaudhary K, Nelson J, Thompson W (1995) Massive overdose of sustained-release verapamil: a case report and review of literature. Am J Med Sci 310:258–263

    PubMed  CAS  Google Scholar 

  • Bachur NR, Gordon SL, Gee MV, Kon H (1979) NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proc Natl Acad Sci USA 76:954–957

    PubMed  CAS  Google Scholar 

  • Bailie DS, Inoue H, Kaseda S, Ben-David J, Zipes DP (1988) Magnesium suppression of early afterdepolarizations and ventricular tachyarrhythmias induced by cesium in dogs. Circulation 77:1395–1402

    PubMed  CAS  Google Scholar 

  • Barry WH, Hasin Y, Smith TW (1985) Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ Res 56:231–241

    PubMed  CAS  Google Scholar 

  • Bottone AE, Voset EE, de Beer EL (1998) Impairment of the actin-myosin interaction in permeabilized cardiac trabeculae after chronic doxorubicin treatment. Clin Cancer Res 4:1031–1037

    PubMed  CAS  Google Scholar 

  • Boucek RJ Jr, Buck SH, Scott F, Oquist NL, Fleischer S, Olson RD (1993) Anthracycline-induced tension in permeabilized cardiac fibers: evidence for the activation of the calcium release channel of sarcoplasmic reticulum. J Mol Cell Cardiol 25:249–259

    PubMed  CAS  Google Scholar 

  • Brahmajothi MV, Morales MJ, Liu S, Rasmusson RL, Campbell DL, Strauss HC (1996) In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circ Res 78:1083–1089

    PubMed  CAS  Google Scholar 

  • Brahmajothi MV, Morales MJ, Rasmusson RL, Campbell DL, Strauss HC (1997) Heterogeneity in K+ channel transcript expression detected in isolated ferret cardiac myocytes. Pacing Clin Electrophysiol 20:388–396

    PubMed  CAS  Google Scholar 

  • Bristow MR, Billingham ME, Mason JW, Daniels JR (1978) Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep 62:873–879

    PubMed  CAS  Google Scholar 

  • Bristow MR, Mason JW, Billingham ME, Daniels JR (1981) Dose-effect and structure-function relationship in doxorubicin cardiomyopathy. Am Heart J 102:709–718

    PubMed  CAS  Google Scholar 

  • Busch AE, Malloy K, Groh WJ, Varnum MD, Adelman JP, Maylie J (1994) The novel class III antiarrhythmic NE-10064 and NE-10133 inhibit IKs channels expressed in Xenopus oocytes and IKs in guinea pig cardiac myocytes. Biochem Biophys Res Commun 202:265–270

    PubMed  CAS  Google Scholar 

  • Busch AE, Eigenberger B, Jurkiewicz NK, Salata JJ, Pica A, Suessbrich H, Lang F (1998) Blockade of HERG channels by class III antiarrhythmic azimilide: mode of action. Br J Pharmacol 123:23–30

    PubMed  CAS  Google Scholar 

  • Chai CY, Wang HH, Hoffman BF, Wang SC (1967) Mechanisms of bradycardia induced by digitalis substances. Am J Physiol 212:26–34

    PubMed  CAS  Google Scholar 

  • Chaiswing L, Cole MP, St Clair DK, Ittarat W, Oberley TD (2004) Oxidative damage precedes nitrative damage in adriamycin-induced cardiac mitochondrial injury. Toxicol Pathol 32:536–547

    PubMed  CAS  Google Scholar 

  • Chaiswing L, Cole MP, Ittarat W, Szweda LI, St Clair DK, Oberley TD (2005) Manganese superoxide dismutase and inducible nitric oxide synthase modify early oxidative events in acute adriamycin-induced mitochondrial toxicity. Mol Cancer Ther 4:1056–1064

    PubMed  CAS  Google Scholar 

  • Chen CM, Gettes LS (1976) Combined effects of rate, membrane potential, and drugs on maximum rate of rise (V max) of action potential upstroke of guinea pig papillary muscle. Circ Res 38:464–469

    PubMed  CAS  Google Scholar 

  • Chen CM, Gettes LS, Katzung BG (1975) Effect of lidocaine and quinidine on steady-state characteristics and recovery kinetics of (dV/dt) max in guinea pig ventricular myocardium. Circ Res 37:20–27

    PubMed  CAS  Google Scholar 

  • Chen J, Seebohm G, Sanguinetti MC (2002) Position of aromatic residue in the S6 domain, not inactivation, dictates cisapride sensitivity of HERG and eag potassium channels. Proc Natl Acad Sci USA 99:12461–12466

    PubMed  CAS  Google Scholar 

  • Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C (2002) Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62:4592–4598

    PubMed  CAS  Google Scholar 

  • Colatsky TJ (1982) Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibers. Circ Res 50:17–27

    PubMed  CAS  Google Scholar 

  • Cranefield PF, Aronson RS, Wit AL (1974) Effect of verapamil on the normal action potential and on a calcium-dependent slow response on canine Purkinje fibers. Circ Res 34:204–213

    PubMed  CAS  Google Scholar 

  • Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia: HERG mutation causes long QT syndrome. Cell 80:795–803

    PubMed  CAS  Google Scholar 

  • Davidenko JM, Cohen L, Goodrow R, Antelevitch C (1989) Quinidine-induced action potential prolongation early afterdepolarizations and triggered activity in canine Purkinje fibers. Effects of stimulation rate, potassium and magnesium. Circulation 79:674–686

    PubMed  CAS  Google Scholar 

  • Del Camino D, Holmgren M, Liu Y, Yellen G (2000) Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403:321–325

    PubMed  Google Scholar 

  • Despa S, Bers DM (2007) Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes. Am J Physiol 293:C321–C327

    CAS  Google Scholar 

  • Dessertenne F (1966) La tachycardie ventriculaire Ă  deux foyers opposĂ©s variables. Arch Mal Coeur 59:263–272

    PubMed  CAS  Google Scholar 

  • DeWitt CR, Waksman JC (2004) Pharmacology, pathophysiology and management of calcium channel blocker and β-blocker toxicity. Toxicol Rev 23:223–238

    PubMed  CAS  Google Scholar 

  • Dobre D, Haaijer-Ruskamp FM, Voors AA, van Veldhuisen DJ (2007) β-Adrenoceptor antagonists in elderly patients with heart failure: a critical review of their efficacy and tolerability. Drugs Aging 24:1031–1044

    PubMed  CAS  Google Scholar 

  • Doruin E, Charpentier F, Gauthier C, Laurent K, Le Marec H (1995) Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol 26:185–192

    Google Scholar 

  • Dostanic I, Schultz JJ, Lorenz JN, Lingrel JB (2004) The α1 isoform of Na,K-ATPase regulates cardiac contractility and functionally interacts and co-localizes with the Na/Ca exchanger in the heart. J Biol Chem 279:54053–54061

    Google Scholar 

  • el-Sherif N, Zeiler RH, Craelius W, Gough WB, Henkin R (1988) QTU prolongation and polymorphic ventricular tachyarrhythmias due to bradycardia-dependent early afterdepolarizations. Afterdepolarizations and ventricular arrhythmias. Circ Res 63:286–305

    Google Scholar 

  • Fernandez D, Ghanta A, Kauffman GW, Sanguinetti MC (2004) Physiochemical features of the hERG channel drug binding site. J Biol Chem 279:10120–10127

    PubMed  CAS  Google Scholar 

  • Ferrero ME, Ferrero E, Gaja G, Bernelli-Zazzera A (1976) Adriamycin: energy metabolism and mitochondrial oxidations in the heart of treated rabbits. Biochem Pharmacol 25:125–130

    PubMed  CAS  Google Scholar 

  • Ferrier GR, Sounders JH, Mendez C (1973) A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res 32:600–609

    PubMed  CAS  Google Scholar 

  • Garvey HL (1969) The mechanism of action of verapamil on the sinus and AV nodes. Eur J Pharmacol 8:159–166

    PubMed  CAS  Google Scholar 

  • Gillis RA, Quest JA (1980) The role of the nervous system in the cardiovascular effects of digitalis. Pharmacol Rev 31:19–97

    Google Scholar 

  • Goodman J, Hochstein P (1977) Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. Biochem Biophys Res Commun 77:797–803

    PubMed  CAS  Google Scholar 

  • Hagane K, Akera T, Berlin JR (1988) Doxorubicin: mechanism of cardiodepressant actions in guinea pigs. J Pharmacol Exp Ther 246:655–661

    PubMed  CAS  Google Scholar 

  • Hancox JC, Witchel HJ, Vanghese A (1998) Alteration of HERG current profile during the cardiac ventricular action potential, following a pore mutation. Biochem Biophys Res Commun 253:719–724

    PubMed  CAS  Google Scholar 

  • Harada K, Lin H, Endo Y, Fujishiro N, Sakamoto Y, Inoue M (2006) Subunit composition and role of Na + , K + -ATPases in ventricular myocytes. J Physiol Sci 56:113–121

    PubMed  CAS  Google Scholar 

  • Haverkamp W, Breithardt G, Camm AJ, Janse MJ, Rosen C, Antzelevitch D et al (2000) The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. Eur Heart J 21:1216–1231

    PubMed  CAS  Google Scholar 

  • Henry M, Kay MM, Viccellio P (1985) Cardiogenic shock associated with calcium-channel and β blockers: reversal with intravenous calcium chloride. Am J Emerg Med 3:334–336

    PubMed  CAS  Google Scholar 

  • Hondeghem LM (2008) Use and abuse of QT and TRIaD in cardiac safety research: Importance of study design and conduct. Eur J Pharmacol 584:1–9

    PubMed  CAS  Google Scholar 

  • Hondeghem LM, Katzung BG (1977) Time–voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472:373–398

    PubMed  CAS  Google Scholar 

  • Hondeghem LM, Lu HR, van Rossem K, De Clerk F (2003) Detection of proarrhythmia in the female rabbit heart: blind validation. J Cardiovasc Electrophysiol 14:287–294

    PubMed  Google Scholar 

  • Iijima T, Taira N (1976) Modification by manganese ions and verapamil of the responses of the atrioventricular nodes to norepinephrine. Eur J Pharmacol 37:55–62

    PubMed  CAS  Google Scholar 

  • Jackman WM, Friday KJ, Anderson JL, Aliot EM, Clark M, Lazzara R (1988) The long QT syndromes: a critical review, new clinical observations and a unifying hypothesis. Prog Cardiovasc Dis 31:115–172

    PubMed  CAS  Google Scholar 

  • January CT, Riddle JM (1989) Early afterdepolarizations: mechanism of induction and block. A role for l-type Ca2+ current. Circ Res 62:563–571

    Google Scholar 

  • January CT, Riddle JM, Salata JJ (1988) A model for early afterdepolarizations: induction with the Ca2+ channel agonist Bay K 8644. Circ Res 62:563–571

    PubMed  CAS  Google Scholar 

  • Kang W, Weiss M (2003a) Kinetic analysis of saturable myocardial uptake of idarubicin in rat heart: effect of doxorubicin and hypothermia. Pharm Res 20:58–63

    PubMed  CAS  Google Scholar 

  • Kang W, Weiss M (2003b) Caffeine enhances myocardial uptake of idarubicin but reverses its negative inotropic effect. Naunyn Schmiedebergs Arch Pharmacol 367:151–155

    PubMed  CAS  Google Scholar 

  • Kaseda S, Gilmour RF, Zipes DP (1989) Depressant effect of magnesium on early afterdepolarizations and triggered activity induced by cesium, quinidine and 4 aminopyridine in canine cardiac Purkinje fibers. Am Heart J 118:458–466

    PubMed  CAS  Google Scholar 

  • Kim Y, Ma A-G, Kitta K, Fitch SN, Ikeda T, Ihara Y, Simon AR, Evans T, Suzuki Y (2003) Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis. Mol Pharmacol 63:368–377

    PubMed  CAS  Google Scholar 

  • Kirsch GE, Trepakova ES, Brimecombe JC, Sidach SS, Erickson HD, Kochan MC, Shyjka LM, Lacerda AE, Brown AM (2004) Variability in the measurement of hERG potassium channel inhibition: Effect of temperature and stimulus pattern. J Pharmacol Method 50:93–101

    CAS  Google Scholar 

  • Koury SI, Stone CK, Thomas SH (1996) Amrinone as an antidote in experimental verapamil overdose. Acad Emerg Med 3:762–767

    PubMed  CAS  Google Scholar 

  • L’Ecuyer T, Sanjeev S, Thomas R, Novak R, Das L, Campbell W, Heide RV (2006) DNA damage is an event in doxorubicin-induced cardiac myocyte death. Am J Physiol 291:H1273–H1280

    Google Scholar 

  • Langer GA (1972) Effects of digitalis on myocardial ionic exchange. Circulation 46:180–187

    PubMed  CAS  Google Scholar 

  • Lebrecht D, Walker UA (2007) Role of mtDNA in anthracycline cardiotoxicity. Cardiovasc Toxicol 7:108–113

    PubMed  CAS  Google Scholar 

  • Lebrecht D, Kokkori A, Ketelsen UP, Setzer B, Walker UA (2005) Tissue-specific mtDNA and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. J Pathol 207:436–444

    PubMed  CAS  Google Scholar 

  • Lee KS (1992) Ibutilide, a new compound with potent class III antiarrhythmic activity, activates a slow inward Na+ current in guinea pig ventricular cells. J Pharmacol Exp Ther 262:99–108

    PubMed  CAS  Google Scholar 

  • Lee KS, Hume JR, Giles W, Brown AM (1981) Sodium current depression by lidocaine and quinidine in isolated ventricular cells. Nature 291:325–327

    PubMed  CAS  Google Scholar 

  • Lees-Miller JP, Duan Y, Teng GO, Duff HJ (2000) Molecular determinant of high-affinity dofetilide to HERG1 expressed in Xenopus oocytes: involvement of S6 sites. Mol Pharmacol 57:367–374

    PubMed  CAS  Google Scholar 

  • Levine JH, Spear JF, Guarnieri T, Weisfeldt ML, de Langen CD, Becker LC, Moore EN (1985) Cesium chloride-induced long QT syndrome: demonstration of afterdepolarization and triggered activity in vivo. Circulation 72:1092–1103

    PubMed  CAS  Google Scholar 

  • Lingrel J, Moseley A, Dostanic I, Cougnon M, He S, James P, Woo A, O’Connor K, Neumann J (2003) Functional roles of the α isoforms of the Na, K-ATPase. Ann N Y Acad Sci 986:354–359

    PubMed  CAS  Google Scholar 

  • Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardium, and endocardium. In vitro and in vivo correlations. Circulation 76:351–365

    CAS  Google Scholar 

  • Lu HR, Vlaminckx E, Hermans AN, Rohrbacher J, Van Ammel K, Towart R, Pugsley M, Gallacher DJ (2008) Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in ICHS7B Guidelines. Br J Pharmacol 154:1427–1438

    PubMed  CAS  Google Scholar 

  • Martin RL, Su Z, Limberis JT, Palmatier JD, Cowart MD, Cox BF, Gintant GA (2006) In vitro preclinical cardiac assessment of tolterodine and terodiline: multiple factors predict the clinical experience. J Cardiovasc Pharmacol 48:199–206

    PubMed  CAS  Google Scholar 

  • McDonough AA, Zhang Y, Shin V, Frank JS (1996) Subcellular distribution of sodium pump isoform subunit in mammalian cardiac myocytes. Am J Physiol 270:C1221–C1227

    PubMed  CAS  Google Scholar 

  • McDonough AA, Velotta JB, Schwinger RH, Philipson KD, Farley RA (2002) The cardiac sodium pump: structure and function. Basic Res Cardiol 97(Suppl 1):I19–I24

    PubMed  Google Scholar 

  • McPate MJ, Duncan RS, Hancox JC, Witchel HJ (2008) Pharmacology of the short QT syndrome N588K-hERG K+ channel mutation: differential impact on selected class I and class III antiarrhythmic drugs. Br J Pharmacol. doi: Epub 10.1038/bjp. 2008.325

    Google Scholar 

  • Merban E, Robinson SW, Wier WG (1986) Mechanism of arrhythmogenic delayed and early afterdepolarization in ferret muscle. J Clin Invest 78:1185–1192

    Google Scholar 

  • Mergenthaler J, Haverkamp W, HĂĽttenhofer A, Skryabin BV, MuĂźhoff U, Borggrefe M, Speckmann E-J, Breithardt G, Madeja M (2001) Blocking effects of the antiarrhythmic drug propafenone on the HERG potassium channel. Naunyn Schmiedebergs Arch Pharmacol 363:472–480

    PubMed  CAS  Google Scholar 

  • Milberg P, Hilker E, Ramtin S, Cakir Y, Stypmann J, Engelen MA, Mönning G, Osada N, Breithardt G, Haverkamp W, Eckardt L (2007a) Proarrhythmia as a class effect of quinolones: increased dispersion of repolarization and triangulation of action potential predict torsade de pointes. J Cardiovasc Electrophysiol 18:647–654

    PubMed  Google Scholar 

  • Milberg P, Fleischer D, Stypmann J, Osada N, Mönning G, Engelen MA, Bruch C, Breithardt G, Haverkamp W, Eckardt L (2007b) Reduced repolarization reserve due to anthracycline therapy facilitates torsade de pointes induced by IKr blockers. Basic Res Cardiol 102:42–51

    PubMed  CAS  Google Scholar 

  • Milnes JT, Crociani O, Arcangeli A, Hancox JC, Witchel HJ (2003) Blockade of HERG potassium currents by fluvoxamine: incomplete attenuation by S6 mutations at F656 or Y652. Br J Pharmacol 139:887–898

    PubMed  CAS  Google Scholar 

  • Mitcheson JS, Chen J, Sanguinetti MC (2000a) Trapping of a methanesulfonanilide by closure of HERG potassium channel activation gate. J Gen Physiol 115:229–240

    PubMed  CAS  Google Scholar 

  • Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000b) A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A 97:12329–12333

    PubMed  CAS  Google Scholar 

  • Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC (1977) Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 197:165–167

    CAS  Google Scholar 

  • Ogihara M, Tanno M, Izumiyama N, Nakamura H, Taguchi T (2002) Increase in DNA polymerase gamma in the hearts of adriamycin-administered rats. Exp Mol Pathol 73:234–241

    PubMed  CAS  Google Scholar 

  • Okada T, Konishi T (1975) Effects of verapamil on SA and AV nodal action potentials in the isolated rabbit heart. Jap Circ J 39:913–917

    PubMed  CAS  Google Scholar 

  • Olson RD, Mushlin PS (1990) Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 4:3076–3086

    PubMed  CAS  Google Scholar 

  • Papadopoulou LC, Theophilidis G, Thomopoulos GN, Tsiftsoglou AS (1999) Structural and functional impairment of mitochondria in adriamycin-induced cardiomyopathy in mice: suppression of cyctochrome c oxidase II gene expression. Biochem Pharmacol 57:481–489

    PubMed  CAS  Google Scholar 

  • Papoian T, Lewis W (1992) Anthracyclines selectively decrease α cardiac actin mRNA abundance in the rat heart. Am J Pathol 141:1187–1195

    PubMed  CAS  Google Scholar 

  • Paul AA, Witchel HJ, Hancox JC (2002) Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine. Br J Pharmacol 136:717–729

    PubMed  CAS  Google Scholar 

  • Paul AA, Witchel HJ, Hancox JC (2001) Inhibition of HERG potassium channel current by the class 1a antiarrhythmic agent disopyramide. Biochem Biophys Res Commun 280:1243–1250

    PubMed  CAS  Google Scholar 

  • Perrin MJ, Kuchel PW, Campbell TJ, Vandenberg JI (2008) Drug binding to the inactivated state is necessary but not sufficient for high affinity binding to hERG channels. Mol Pharmacol. doi: Epub 10.1124/mol.108.049056

    Google Scholar 

  • Pierre SV, Xie Z (2006) The Na, K-ATPase receptor complex: its organization and membership. Cell Biochem Biophys 46:303–316

    PubMed  CAS  Google Scholar 

  • Priori SG, Corr PB (1990) Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol 258:H1796–H1805

    PubMed  CAS  Google Scholar 

  • Pugelsy MK, Hancox JC, Curtis MJ (2008a) Perception of validity of clinical and preclinical methods for assessment of torsade de pointes liability. Pharmacol Ther 119:115–117

    Google Scholar 

  • Pugsley MK, Authier S, Curtis MJ (2008b) Principles of safety pharmacology. Br J Pharmacol 154:1382–1399

    PubMed  CAS  Google Scholar 

  • Ridley JM, Milnes JT, Witchel HJ, Hancox J (2004) High affinity HERG K+ channel blockade by the antiarrhythmic agent dronedarone: resistance to mutation of the S6 residues Y652 and F656. Biochem Biophys Res Commun 325:883–891

    PubMed  CAS  Google Scholar 

  • Roden DM (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350:1013–1022

    PubMed  CAS  Google Scholar 

  • Rosen MR, Gelband H, Merker C, Hoffman BF (1973) Mechanism of digitalis toxicity. Effect of ouabain on phase four of canine Purkinje fiber transmembrane potential. Circulation 47:681–689

    PubMed  CAS  Google Scholar 

  • Rosen MR, Wit AL, Hoffman BF (1975) Electrophysiology and pharmacology of cardiac arrhythmias. IV. Cardiac antiarrhythmic and toxic effects of digitalis. Am Heart J 89:391–399

    CAS  Google Scholar 

  • Sanguinetti MC, Xu PO (1999) Mutation of the S4–S5 linker alter activation properties of HERG potassium channel expressed in Xenopus oocytes. J Physiol 514:667–675

    PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    PubMed  CAS  Google Scholar 

  • Sarubbi B, Orditura M, Ducceschi V, De Vita F, Santangelo L, Ciaramella F, Catalano G, Iacono A (1997) Ventricular repolarization time indexes following anthracycline treatment. Heart Vessels 12:262–266

    PubMed  CAS  Google Scholar 

  • Sawyer DB, Zuppinger C, Miller TA, Eppenberger HM, Suter TM (2002) Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1β and anti-erbB2. Circulation 105:1551–1554

    PubMed  CAS  Google Scholar 

  • Seraydarian MW, Artaza L, Goodman MF (1977) Adriamycin: effect on mammalian cardiac cells in culture. I. Cell population and energy metabolism. J Mol Cell Cardiol 9:375–382

    PubMed  CAS  Google Scholar 

  • Serrano J, Palmeira CM, Kuehl DW, Wallace KB (1999) Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochim Biophys Acta 1411:201–205

    PubMed  CAS  Google Scholar 

  • Shadle SE, Bammel BP, Cusack BJ, Knighton RA, Olson SJ, Mushlin PS, Olson RD (2000) Daunorubicin cardiotoxicity: evidence for the importance of the quinone moiety in a free-radical-independent mechanism. Biochem Pharmacol 60:1435–1444

    PubMed  CAS  Google Scholar 

  • Sicouri S, Antzelevitch C (1991a) A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res 68:1729–1741

    PubMed  CAS  Google Scholar 

  • Sicouri S, Antzelevitch C (1991b) Afterdepolarization and triggered activity develop in a select population of cells (M cells) in canine ventricle myocardium: the effects of acetylstrophenthidin and Bay K 8644. Pacing Clin Electrophysiol 14:1714–1720

    PubMed  CAS  Google Scholar 

  • Sicouri S, Antzelevitch C (1993) Drug-induced afterdepolarization and triggered activity occur in a discrete subpopulation of ventricular muscle cells (M cells) in the canine heart: quinidine and digitalis. J Cardiovasc Electrophysiol 4:48–58

    PubMed  CAS  Google Scholar 

  • Sicouri S, Antzelevitch C (1995) Electrophysiologic characteristics of M cells in the canine left ventricular free wall. J Cardiovasc Electrophysiol 6:591–603

    PubMed  CAS  Google Scholar 

  • Sicouri S, Fish J, Antzelevitch C (1994) Distribution of M cells in the canine ventricle. J Cardiovasc Electrophysiol 5:824–837

    PubMed  CAS  Google Scholar 

  • Sicouri S, Quist M, Antzelevitch C (1996) Evidence for the presence on M cells in the guinea pig ventricle. J Cardiovasc Electrophysiol 7:503–511

    PubMed  CAS  Google Scholar 

  • Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. New Engl J Med 339:900–905

    PubMed  CAS  Google Scholar 

  • Smith HJ, Goldstein RA, Griffith JM, Kent KM, Epstein SE (1976) Selective depression of ischemic myocardium by verapamil. Circulation 54:629–635

    PubMed  CAS  Google Scholar 

  • Solem LE, Henry TR, Wallace KB (1994) Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration. Toxicol Appl Pharmacol 129:214–222

    PubMed  CAS  Google Scholar 

  • Sounders JH, Ferrier GR, Moe GK (1973) Conduction block associated with transient depolarizations induced by acetylstrophantidin in isolated canine Purkinje fibers. Circ Res 32:610–617

    Google Scholar 

  • Spector PS, Curran ME, Keating MT, Sanguinetti MC (1996) Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. Circ Res 78:499–503

    PubMed  CAS  Google Scholar 

  • Spiker DG (1978) The toxicity of tricyclic antidepressants. Commun Psychopharmacol 2:419–427

    PubMed  CAS  Google Scholar 

  • Studenik C, Lemmens-Gruber R, Heistracher P (1999) Proarrhythmic effects of antidepressants and neuroleptic drugs on isolated spontaneously beating guinea-pig Purkinje fibers. Eur J Pharmacol 7:113–118

    CAS  Google Scholar 

  • Swift F, Tovsrud N, Enger UH, Sjaastad I, Sejersted OM (2007) The Na+/K+-ATPase α2-isoform regulate cardiac contractility in rat cardiomyocytes. Cardiovasc Res 75:109–117

    PubMed  CAS  Google Scholar 

  • Szabo B, Sweidan R, Rajagopalan CV, Lazzara R (1994) Role of Na+:Ca2+ exchange current in Cs+-induced early afterdepolarization in Purkinje fibers. J Cardiovasc Electrophysiol 5:933–944

    PubMed  CAS  Google Scholar 

  • Szabo B, Kovacs T, Lazzara R (1995) Role of calcium loading in early afterdepolarization generated by Cs+ in canine and guinea pig Purkinje fibers. J Cardiovasc Electrophysiol 6:796–812

    PubMed  CAS  Google Scholar 

  • Taccardi B, Punske BB, Sachse F, Tricoche X, Colli-Franzone P, Pavarino LF, Zabawa C (2005) Intramural activation of repolarization sequences in canine ventricles. Experimental and simulation studies. J Electrocard 38:131–137

    Google Scholar 

  • Tamargo J (2000) Drug-induced torsade de pointes: from molecular biology to bedside. Jpn J Pharmacol 83:1–19

    PubMed  CAS  Google Scholar 

  • Ten Eick RE, Hoffman BF (1969) Chronotropic effect of cardiac glycosides in cats, dogs, and rabbits. Circ Res 25:365–378

    PubMed  Google Scholar 

  • Teschemacher AG, Seward EP, Hancox JC, Witchel HJ (1999) Inhibition of the current of heterologously expressed HERG potassium channels by imipramine and amitriptyline. Br J Pharmacol 128:479–485

    PubMed  CAS  Google Scholar 

  • Thackray SD, Ghosh JM, Wright GA, Witte KK, Nikitin NP, Kaye GC, Clark AL, Tweddel A, Cleland JG (2006) The effect of altering heart rate on ventricular function in patients with heart failure treated with β-blockers. Am Heart J 152:713.e9–713.e13

    Google Scholar 

  • Thanacoody HK, Thomas SH (2005) Tricyclic antidepressant poisoning toxicity. Toxicol Rev 24:205–214

    PubMed  CAS  Google Scholar 

  • Thomas SH, Higham PD, Hartigan-Go K, Kamali F, Wood P, Campbell RW, Ford GA (1995) Concentration dependent cardiotoxicity of terodiline in patients treated for urinary incontinence. Br Heart J 74:53–56

    PubMed  CAS  Google Scholar 

  • Thomas D, Gut B, Wendt-Nordahl G, Kiehn J (2002) The antidepressant drug fluoxetine is an inhibitor of human ether-a-go-go-related gene (HERG) potassium channels. J Pharmacol Exp Ther 300:543–548

    PubMed  CAS  Google Scholar 

  • Tian J, Cai T, Yuan Z, Wang H, Liu L, Haas M, Maksimova E, Huang X-Y, Xie Z-J (2006) Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell 17:317–326

    PubMed  CAS  Google Scholar 

  • Tokarska-Schlattner M, Wallimann T, Schlattner U (2002) Multiple interference of anthracyclines with mitochondrial creatine kinases: preferential damage of the cardiac isoenzyme and its implications for drug cardiotoxicity. Mol Pharmacol 61:516–523

    PubMed  CAS  Google Scholar 

  • Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    PubMed  CAS  Google Scholar 

  • Vandenberg JI, Walker BD, Campbell TJ (2001) HERG K+ channels: friend and foe. Trends Pharmacol Sci 22:240–246

    PubMed  CAS  Google Scholar 

  • Vetter FJ, Simons SB, Mironov S, Hyatt CJ, Pertsov AM (2005) Epicardial fiber organization in swine right ventricle and its impact on propagation. Circ Res 96:244–251

    PubMed  CAS  Google Scholar 

  • Vick JA, Kandil A, Herman EH, Balazs T (1983) Reversal of propranolol and verapamil toxicity by calcium. Vet Hum Toxicol 25:8–10

    PubMed  CAS  Google Scholar 

  • Volders PG, Sipido KR, Carmeliet E, Spätjens RL, Wellens HJ, Vos MA (1999) Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation 99:206–210

    PubMed  CAS  Google Scholar 

  • Waldo AL, Camm AJ, de Ruyter H, Friedman PL, MacNeil DJ, Pauls JF, Pit B, Pratt CM, Schwartz PJ, Vettri EP, for the SWORD investigators (1996) Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. Lancet 348:7–12

    Google Scholar 

  • Walker DB, Sigleton CB, Bursill JA, Wyse KR, Valenzela SM, Qiu MR, Breit SN, Campbell TJ (1999) Inhibition of the human ether-a-go-go related gene (HERG) potassium channel by cisapride: affinity for open and inactivated states. Br J Pharmacol 128:444–450

    PubMed  CAS  Google Scholar 

  • Wang J, Schwinger RH, Frank K, MĂĽller-Ehmsen J, Martin-Vasallo P, Pressley TA, Xiang A, Erdmann E, McDonough AA (1996) Regional expression of sodium pump subunits isoforms and Na+–Ca++ exchanger in the human heart. J Clin Invest 98:1650–1658

    PubMed  CAS  Google Scholar 

  • Wang S, Morales MJ, Liu S, Strauss HC, Rasmusson RL (1997) Modulation of HERG affinity for E-4031 by [K+]o and C-type inactivation. FEBS Lett 417:43–47

    PubMed  CAS  Google Scholar 

  • Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 91:3438–3442

    PubMed  CAS  Google Scholar 

  • Wit AL, Cranefield PF (1974) Effect of verapamil on the sinoatrial and atrioventricular nodes on the rabbit and the mechanism by which it arrests reentrant atrioventricular nodal tachycardia. Circ Res 35:413–425

    PubMed  CAS  Google Scholar 

  • Witchel HJ (2007) The hERG potassium channel as a therapeutic target. Expert Opin Ther Targets 11:321–336

    PubMed  CAS  Google Scholar 

  • Witchel HJ, Hancox JC (2000) Familial and acquired long QT syndrome and the cardiac rapid delayed rectifier potassium current. Clin Exp Pharmacol Physiol 27:753–766

    PubMed  CAS  Google Scholar 

  • Witchel HJ, Pabbathi VK, Hofmann G, Paul AA, Hancox JC (2002) Inhibitory actions of the selective serotonin re-uptake inhibitor citalopram on HERG and ventricular l-type calcium currents. FEBS Lett 512:59–66

    PubMed  CAS  Google Scholar 

  • Xie Z, Cai T (2003) Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol Interv 3:157–168

    PubMed  CAS  Google Scholar 

  • Yan G-X, Shimizu W, Antzelevitch C (1998) Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparation. Circulation 98:1921–1927

    PubMed  CAS  Google Scholar 

  • Zahler R, Sun W, Ardito T, Zhang ZT, Kocsis JD, Kashgarian M (1996) The α3 isoform protein of the Na + , K + -ATPase is associated with the sites of cardiac and neuromuscular impulse transmission. Circ Res 78:870–879

    PubMed  CAS  Google Scholar 

  • Zaritsky AL, Horowitz M, Chernow B (1988) Glucagon antagonism of calcium channel blocker-induced myocardial dysfunction. Crit Care Med 16:246–251

    PubMed  CAS  Google Scholar 

  • Zeltser D, Justo D, Halkin A, Rosso R, Ish-Shalom M, Hochenberg M, Viskin S (2004) Drug-induced atrioventricular block: prognosis after discontinuation of the culprit drug. J Am Coll Cardiol 44:105–108

    PubMed  CAS  Google Scholar 

  • Zipes DP, Fischer JC (1974) Effects of agents which inhibit the slow channel on sinus node automaticity and atrioventricular conduction in the dog. Circ Res 34:184–192

    PubMed  CAS  Google Scholar 

  • Zou A, Curran ME, Keating MT, Sanguinetti MC (1997) Single HERG delayed rectifier K+ channel expressed in Xenopus oocytes. Am J Physiol 272:H1309–H1314

    PubMed  CAS  Google Scholar 

  • Zou A, Xu QP, Sanguinetti MC (1998) A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation. J Physiol (London) 509:129–137

    CAS  Google Scholar 

  • Zucchi R, Danesi R (2003) Cardiac toxicity of antineoplastic anthracyclines. Curr Med Chem Anticancer Agents 3:151–171

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Tabrizchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tabrizchi, R. (2010). Molecular Mechanisms of Adverse Drug Reactions in Cardiac Tissue. In: Uetrecht, J. (eds) Adverse Drug Reactions. Handbook of Experimental Pharmacology, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00663-0_4

Download citation

Publish with us

Policies and ethics