Mechanisms of Acetaminophen-Induced Liver Necrosis

  • Jack A. HinsonEmail author
  • Dean W. Roberts
  • Laura P. James
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 196)


Although considered safe at therapeutic doses, at higher doses, acetaminophen produces a centrilobular hepatic necrosis that can be fatal. Acetaminophen poisoning accounts for approximately one-half of all cases of acute liver failure in the United States and Great Britain today. The mechanism occurs by a complex sequence of events. These events include: (1) CYP metabolism to a reactive metabolite which depletes glutathione and covalently binds to proteins; (2) loss of glutathione with an increased formation of reactive oxygen and nitrogen species in hepatocytes undergoing necrotic changes; (3) increased oxidative stress, associated with alterations in calcium homeostasis and initiation of signal transduction responses, causing mitochondrial permeability transition; (4) mitochondrial permeability transition occurring with additional oxidative stress, loss of mitochondrial membrane potential, and loss of the ability of the mitochondria to synthesize ATP; and (5) loss of ATP which leads to necrosis. Associated with these essential events there appear to be a number of inflammatory mediators such as certain cytokines and chemokines that can modify the toxicity. Some have been shown to alter oxidative stress, but the relationship of these modulators to other critical mechanistic events has not been well delineated. In addition, existing data support the involvement of cytokines, chemokines, and growth factors in the initiation of regenerative processes leading to the reestablishment of hepatic structure and function.


Acetaminophen Liver Glutathione Covalent binding Mitochondria Oxidative stress JNK 



Support from the National Institutes of Health (DK075936 to L.P.J. and DK079008 to J.A.H.), from the University of Arkansas for Medical Sciences, from the Arkansas Children’s Hospital Research Institute, and from the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000 is gratefully acknowledged.


  1. Adams ML, Pierce RH, Vail ME, White CC, Tonge RP, Kavanagh TJ, Fausto N, Nelson SD, Bruschi SA (2001) Enhanced acetaminophen hepatotoxicity in transgenic mice overexpressing BCL-2. Mol Pharmacol 60:907-915PubMedGoogle Scholar
  2. Adamson GM, Harman AW (1993) Oxidative stress in cultured hepatocytes exposed to acetaminophen. Biochem Pharmacol 45:2289-2294PubMedGoogle Scholar
  3. Albano E, Poli G, Chiarpotto E, Biasi F, Dianzani MU (1983) Paracetamol-stimulated lipid peroxidation in isolated rat and mouse hepatocytes. Chem Biol Interact 47:249-263PubMedGoogle Scholar
  4. Andersson BS, Rundgren M, Nelson SD, Harder S (1990) N-acetyl-p-benzoquinone imine-induced changes in the energy metabolism in hepatocytes. Chem Biol Interact 75:201-211PubMedGoogle Scholar
  5. Ankoma-Sey V, Wang Y, Dai Z (2000) Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology 31:141-148PubMedGoogle Scholar
  6. Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345(Pt 2):271-278PubMedGoogle Scholar
  7. Aust SD, Morehouse LA, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radic Biol Med 1:3-25PubMedGoogle Scholar
  8. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658-662PubMedGoogle Scholar
  9. Bajt ML, Knight TR, Farhood A, Jaeschke H (2003) Scavenging peroxynitrite with glutathione promotes regeneration and enhances survival during acetaminophen-induced liver injury in mice. J Pharmacol Exp Ther 307:67-73Google Scholar
  10. Bajt ML, Cover C, Lemasters JJ, Jaeschke H (2006) Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci 94:217-225PubMedGoogle Scholar
  11. Bajt ML, Farhood A, Lemasters JJ, Jaeschke H (2008) Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther 324:8-14PubMedGoogle Scholar
  12. Bartolone JB, Sparks K, Cohen SD, Khairallah EA (1987) Immunochemical detection of acetaminophen-bound liver proteins. Biochem Pharmacol 36:1193-1196PubMedGoogle Scholar
  13. Bartolone JB, Beierschmitt WP, Birge RB, Hart SG, Wyand S, Cohen SD, Khairallah EA (1989) Selective acetaminophen metabolite binding to hepatic and extrahepatic proteins: an in vivo and in vitro analysis. Toxicol Appl Pharmacol 99:240-249PubMedGoogle Scholar
  14. Beales D, McLean AE (1996) Protection in the late stages of paracetamol-induced liver cell injury with fructose, cyslosporin A and trifluoperazine. Toxicology 107:201-208PubMedGoogle Scholar
  15. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424-C1437PubMedGoogle Scholar
  16. Bessems JG, Vermeulen NP (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31:55-138PubMedGoogle Scholar
  17. Blazka ME, Germolec DR, Simeonova P, Bruccoleri A, Pennypacker KR, Luster MI (1995a) Acetaminophen-induced hepatotoxicity is associated with early changes in NF-kB and NF-IL6 DNA binding activity. J Inflamm 47:138-150PubMedGoogle Scholar
  18. Blazka ME, Wilmer JL, Holladay SD, Wilson RE, Luster MI (1995b) Role of proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 133:43-52PubMedGoogle Scholar
  19. Blazka ME, Elwell MR, Holladay SD, Wilson RE, Luster MI (1996) Histopathology of acetaminophen-induced liver changes: role of interleukin 1 alpha and tumor necrosis factor alpha. Toxicol Pathol 24:181-189PubMedGoogle Scholar
  20. Boelsterli UA, Lim PL (2007) Mitochondrial abnormalities-a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 220:92-107PubMedGoogle Scholar
  21. Boess F, Bopst M, Althaus R, Polsky S, Cohen SD, Eugster HP, Boelsterli UA (1998) Acetaminophen hepatotoxicity in tumor necrosis factor/lymphotoxin-alpha gene knockout mice. Hepatology 27:1021-1029PubMedGoogle Scholar
  22. Bond GR, Novak JE (1995) The human and economic cost of paracetamol (acetaminophen) overdose. Pharmacoeconomics 8:177-181PubMedGoogle Scholar
  23. Bone-Larson CL, Hogaboam CM, Evanhoff H, Strieter RM, Kunkel SL (2001a) IFN-gamma-inducible protein-10 (CXCL10) is hepatoprotective during acute liver injury through the induction of CXCR2 on hepatocytes. J Immunol 167:7077-7083PubMedGoogle Scholar
  24. Bone-Larson CL, Hogaboam CM, Evanhoff H, Strieter RM, Kunkel SL (2001b) IFN-gamma-inducible protein-10 (CXCL10) is hepatoprotective during acute liver injury through the induction of CXCR2 on hepatocytes. J Immunol 167:7077-7083PubMedGoogle Scholar
  25. Boobis AR, Tee LB, Hampden CE, Davies DS (1986) Freshly isolated hepatocytes as a model for studying the toxicity of paracetamol. Food Chem Toxicol 24:731-736PubMedGoogle Scholar
  26. Bourdi M, Masubuchi Y, Reilly TP, Amouzadeh HR, Martin JL, George JW, Shah AG, Pohl LR (2002) Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 35:289-298PubMedGoogle Scholar
  27. Bourdi M, Korrapati MC, Chakraborty M, Yee SB, Pohl LR (2008) Protective role of c-Jun N-terminal kinase 2 in acetaminophen-induced liver injury. Biochem Biophys Res Commun 374:6-10PubMedGoogle Scholar
  28. Boyd EM, Bereczky GM (1966) Liver necrosis from paracetamol. Br J Pharmacol Chemother 26:606-614PubMedGoogle Scholar
  29. Boyer TD, Rouff SL (1971) Acetaminophen-induced hepatic necrosis and renal failure. JAMA 218:440-441PubMedGoogle Scholar
  30. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755-767PubMedGoogle Scholar
  31. Bulera SJ, Cohen SD, Khairallah EA (1996) Acetaminophen-arylated proteins are detected in hepatic subcellular fractions and numerous extra-hepatic tissues in CD-1 and C57B1/6J mice. Toxicology 109:85-99PubMedGoogle Scholar
  32. Burcham PC, Harman AW (1991) Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem 266:5049-5054PubMedGoogle Scholar
  33. Casteilla L, Rigoulet M, Penicaud L (2001) Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life 52:181-188PubMedGoogle Scholar
  34. Cederbaum AI (2006) CYP2E1-biochemical and toxicological aspects and role in alcohol-induced liver injury. Mt Sinai J Med 73:657-672PubMedGoogle Scholar
  35. Chen Y, Morrow JD, Roberts LJ 2nd (1999) Formation of reactive cyclopentenone compounds in vivo as products of the isoprostane pathway. J Biol Chem 274:10863-10868PubMedGoogle Scholar
  36. Chen C, Krausz KW, Idle JR, Gonzalez FJ (2008) Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice. J Biol Chem 283:4543-4559PubMedGoogle Scholar
  37. Cheung C, Yu AM, Ward JM, Krausz KW, Akiyama TE, Feigenbaum L, Gonzalez FJ (2005) The cyp2e1-humanized transgenic mouse: role of cyp2e1 in acetaminophen hepatotoxicity. Drug Metab Dispos 33:449-457PubMedGoogle Scholar
  38. Chiu H, Gardner CR, Dambach DM, Brittingham JA, Durham SK, Laskin JD, Laskin DL (2003a) Role of p55 tumor necrosis factor receptor 1 in acetaminophen-induced antioxidant defense. Am J Physiol Gastrointest Liver Physiol 285:G959-G966PubMedGoogle Scholar
  39. Chiu H, Gardner CR, Dambach DM, Durham SK, Brittingham JA, Laskin JD, Laskin DL (2003b) Role of tumor necrosis factor receptor 1 (p55) in hepatocyte proliferation during acetaminophen-induced toxicity in mice. Toxicol Appl Pharmacol 193:218-227PubMedGoogle Scholar
  40. Cohen SD, Khairallah EA (1997) Selective protein arylation and acetaminophen-induced hepatotoxicity. Drug Metab Rev 29:59-77PubMedGoogle Scholar
  41. Cohen SD, Pumford NR, Khairallah EA, Boekelheide K, Pohl LR, Amouzadeh HR, Hinson JA (1997) Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol 143:1-12PubMedGoogle Scholar
  42. Coles B, Wilson I, Wardman P, Hinson JA, Nelson SD, Ketterer B (1988) The spontaneous and enzymatic reaction of N-acetyl-p-benzoquinonimine with glutathione: a stopped-flow kinetic study. Arch Biochem Biophys 264:253-260PubMedGoogle Scholar
  43. Corcoran GB, Todd EL, Racz WJ, Hughes H, Smith CV, Mitchell JR (1985) Effects of N-acetylcysteine on the disposition and metabolism of acetaminophen in mice. J Pharmacol Exp Ther 232:857-863PubMedGoogle Scholar
  44. Corcoran GB, Wong BK, Neese BL (1987) Early sustained rise in total liver calcium during acetaminophen hepatotoxicity in mice. Res Commun Chem Pathol Pharmacol 58:291-305PubMedGoogle Scholar
  45. Cover C, Mansouri A, Knight TR, Bajt ML, Lemasters JJ, Pessayre D, Jaeschke H (2005) Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther 315:879-887Google Scholar
  46. Cover C, Liu J, Farhood A, Malle E, Waalkes MP, Bajt ML, Jaeschke H (2006) Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 216:98-107PubMedGoogle Scholar
  47. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379-1383PubMedGoogle Scholar
  48. Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1:145-157PubMedGoogle Scholar
  49. Crow JP (2000) Peroxynitrite scavenging by metalloporphyrins and thiolates. Free Radic Biol Med 28:1487-1494PubMedGoogle Scholar
  50. Dahlin DC, Nelson SD (1982) Synthesis, decomposition kinetics, and preliminary toxicological studies of pure N-acetyl-p-benzoquinone imine, a proposed toxic metabolite of acetaminophen. J Med Chem 25:885-886PubMedGoogle Scholar
  51. Dahlin DC, Miwa GT, Lu AY, Nelson SD (1984) N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81:1327-1331PubMedGoogle Scholar
  52. Davern TJ 2nd, James LP, Hinson JA, Polson J, Larson AM, Fontana RJ, Lalani E, Munoz S, Shakil AO, Lee WM (2006) Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology 130:687-694PubMedGoogle Scholar
  53. Davidson DG, Eastham WN (1966) Acute liver necrosis following overdose of paracetamol. Br Med J 5512:497-499Google Scholar
  54. Davis DC, Potter WZ, Jollow DJ, Mitchell JR (1974) Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sci 14:2099-2109PubMedGoogle Scholar
  55. Dejean LM, Martinez-Caballero S, Guo L, Hughes C, Teijido O, Ducret T, Ichas F, Korsmeyer SJ, Antonsson B, Jonas EA, Kinnally KW (2005) Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16:2424-2432PubMedGoogle Scholar
  56. Dejean LM, Martinez-Caballero S, Kinnally KW (2006a) Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ 13:1387-1395PubMedGoogle Scholar
  57. Dejean LM, Martinez-Caballero S, Manon S, Kinnally KW (2006b) Regulation of the mitochondrial apoptosis-induced channel, MAC, by BCL-2 family proteins. Biochim Biophys Acta 1762:191-201PubMedGoogle Scholar
  58. DeLeve LD, Wang X, Kaplowitz N, Shulman HM, Bart JA, van der Hoek A (1997) Sinusoidal endothelial cells as a target for acetaminophen toxicity. Direct action versus requirement for hepatocyte activation in different mouse strains. Biochem Pharmacol 53:1339-1345PubMedGoogle Scholar
  59. Diehl AM, Yin M, Fleckenstein J, Yang SQ, Lin HZ, Brenner DA, Westwick J, Bagby G, Nelson S (1994) Tumor necrosis factor-alpha induces c-jun during the regenerative response to liver injury. Am J Physiol 267:G552-G561PubMedGoogle Scholar
  60. Dimova S, Koleva M, Rangelova D, Stoythchev T (1995) Effect of nifedipine, verapamil, diltiazem and trifluoperazine on acetaminophen toxicity in mice. Arch Toxicol 70:112-118PubMedGoogle Scholar
  61. Dixon MF, Nimmo J, Prescott LF (1971) Experimental paracetamol-induced hepatic necrosis: a histopathological study. J Pathol 103:225-229PubMedGoogle Scholar
  62. Donahower B, McCullough SS, Kurten R, Lamps LW, Simpson P, Hinson JA, James LP (2006) Vascular endothelial growth factor and hepatocyte regeneration in acetaminophen toxicity. Am J Physiol Gastrointest Liver Physiol 291:G102-G109PubMedGoogle Scholar
  63. Donahower BC, McCullough SS, Lamps L, Stowe CD, Hinson JA, James LP (2007) Evaluation of Vascular Endothelial Growth Factor (VEGF) in Acetaminophen Toxicity in the Mouse. Experimental Biology meeting abstracts [on CD-ROM], Abstract # 730.12Google Scholar
  64. Dong H, Haining RL, Thummel KE, Rettie AE, Nelson SD (2000) Involvement of human cytochrome P450 2D6 in the bioactivation of acetaminophen. Drug Metab Dispos 28:1397-1400PubMedGoogle Scholar
  65. Donnelly PJ, Walker RM, Racz WJ (1994) Inhibition of mitochondrial respiration in vivo is an early event in acetaminophen-induced hepatotoxicity. Arch Toxicol 68:110-118PubMedGoogle Scholar
  66. El-Hassan H, Anwar K, Macanas-Pirard P, Crabtree M, Chow SC, Johnson VL, Lee PC, Hinton RH, Price SC, Kass GE (2003) Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury: roles of cytochrome c, Bax, Bid, and caspases. Toxicol Appl Pharmacol 191:118-129PubMedGoogle Scholar
  67. Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25:9350-9359PubMedGoogle Scholar
  68. Ferrara N (2001) Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 280:C1358-C1366PubMedGoogle Scholar
  69. Fiore NF, Ledniczky G, Liu Q, Orazi A, Du X, Williams DA, Grosfeld JL (1998) Comparison of interleukin-11 and epidermal growth factor on residual small intestine after massive small bowel resection. J Pediatr Surg 33:24-29PubMedGoogle Scholar
  70. Gallucci RM, Simeonova PP, Toriumi W, Luster MI (2000) TNF-alpha regulates transforming growth factor-alpha expression in regenerating murine liver and isolated hepatocytes. J Immunol 164:872-878PubMedGoogle Scholar
  71. Gardner CR, Heck DE, Yang CS, Thomas PE, Zhang XJ, DeGeorge GL, Laskin JD, Laskin DL (1998) Role of nitric oxide in acetaminophen-induced hepatotoxicity in the rat. Hepatology 27:748-754PubMedGoogle Scholar
  72. Gardner CR, Laskin JD, Dambach DM, Sacco M, Durham SK, Bruno MK, Cohen SD, Gordon MK, Gerecke DR, Zhou P, Laskin DL (2002) Reduced hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase: potential role of tumor necrosis factor-alpha and interleukin-10. Toxicol Appl Pharmacol 184:27-36PubMedGoogle Scholar
  73. Gardner CR, Laskin JD, Dambach DM, Chiu H, Durham SK, Zhou P, Bruno M, Gerecke DR, Gordon MK, Laskin DL (2003) Exaggerated hepatotoxicity of acetaminophen in mice lacking tumor necrosis factor receptor-1. Potential role of inflammatory mediators. Toxicol Appl Pharmacol 192:119-130PubMedGoogle Scholar
  74. Ghafourifar P, Cadenas E (2005) Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 26:190-195PubMedGoogle Scholar
  75. Gibson JD, Pumford NR, Samokyszyn VM, Hinson JA (1996) Mechanism of acetaminophen-induced hepatotoxicity: covalent binding versus oxidative stress. Chem Res Toxicol 9:580-585PubMedGoogle Scholar
  76. Gillette JR, Nelson SD, Mulder GJ, Jollow DJ, Mitchell JR, Pohl LR, Hinson JA (1981) Formation of chemically reactive metabolites of phenacetin and acetaminophen. Adv Exp Med Biol 136(Pt B):931-950Google Scholar
  77. Gonzalez FJ (2007) The 2006 Bernard B. Brodie Award Lecture. Cyp2e1. Drug Metab Dispos 35:1-8PubMedGoogle Scholar
  78. Grewal KK, Racz WJ (1993) Intracellular calcium disruption as a secondary event in acetaminophen-induced hepatotoxicity. Can J Physiol Pharmacol 71:26-33PubMedGoogle Scholar
  79. Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H (2002) Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci 67:322-328PubMedGoogle Scholar
  80. Gujral JS, Hinson JA, Farhood A, Jaeschke H (2004) NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia. Am J Physiol Gastrointest Liver Physiol 287:G243-252Google Scholar
  81. Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N (2006) c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology 131:165-178PubMedGoogle Scholar
  82. Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N (2008) Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 283:13565-13577Google Scholar
  83. Hasegawa T, Malle E, Farhood A, Jaeschke H (2005) Generation of hypochlorite-modified proteins by neutrophils during ischemia-reperfusion injury in rat liver: attenuation by ischemic preconditioning. Am J Physiol Gastrointest Liver Physiol 289:G760-767Google Scholar
  84. Henderson CJ, Wolf CR, Kitteringham N, Powell H, Otto D, Park BK (2000) Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci USA 97:12741-12745PubMedGoogle Scholar
  85. Henderson NC, Pollock KJ, Frew J, Mackinnon AC, Flavell RA, Davis RJ, Sethi T, Simpson KJ (2007) Critical role of c-jun (NH2) terminal kinase in paracetamol- induced acute liver failure. Gut 56:982-990PubMedGoogle Scholar
  86. Hinson JA (1980) Biochemical toxicology of acetaminophen. Rev Biochem Toxicol 2:103-129Google Scholar
  87. Hinson JA, Monks TJ, Hong M, Highet RJ, Pohl LR (1982) 3-(glutathion-S-yl) acetaminophen: a biliary metabolite of acetaminophen. Drug Metab Dispos 10:47-50PubMedGoogle Scholar
  88. Hinson JA, Roberts DW, Benson RW, Dalhoff K, Loft S, Poulsen HE (1990) Mechanism of paracetamol toxicity. Lancet 335:732Google Scholar
  89. Hinson JA, Pike SL, Pumford NR, Mayeux PR (1998) Nitrotyrosine-protein adducts in hepatic centrilobular areas following toxic doses of acetaminophen in mice. Chem Res Toxicol 11:604-607PubMedGoogle Scholar
  90. Hinson JA, Bucci TJ, Irwin LK, Michael SL, Mayeux PR (2002) Effect of inhibitors of nitric oxide synthase on acetaminophen-induced hepatotoxicity in mice. Nitric Oxide 6:160-167PubMedGoogle Scholar
  91. Hinson JA, Reid AB, McCullough SS, James LP (2004) Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition. Drug Metab Rev 36:805-822PubMedGoogle Scholar
  92. Hogaboam CM, Bone-Larson CL, Steinhauser ML, Lukacs NW, Colletti LM, Simpson KJ, Strieter RM, Kunkel SL (1999a) Novel CXCR2-dependent liver regenerative qualities of ELR-containing CXC chemokines. FASEB J 13:1565-1574PubMedGoogle Scholar
  93. Hogaboam CM, Simpson KJ, Chensue SW, Steinhauser ML, Lukacs NW, Gauldie J, Strieter RM, Kunkel SL (1999b) Macrophage inflammatory protein-2 gene therapy attenuates adenovirus- and acetaminophen-mediated hepatic injury. Gene Ther 6:573-584PubMedGoogle Scholar
  94. Hogaboam CM, Bone-Larson C, Matsukawa A, Steinhauser ML, Blease K, Lukacs NW, Kunkel SL (2000a) Therapeutic use of chemokines. Curr Pharm Des 6:651-663PubMedGoogle Scholar
  95. Hogaboam CM, Bone-Larson CL, Steinhauser ML, Matsukawa A, Gosling J, Boring L, Charo IF, Simpson KJ, Lukacs NW, Kunkel SL (2000b) Exaggerated hepatic injury due to acetaminophen challenge in mice lacking C-C chemokine receptor 2. Am J Pathol 156:1245-1252PubMedGoogle Scholar
  96. Ishida Y, Kondo T, Ohshima T, Fujiwara H, Iwakura Y, Mukaida N (2002) A pivotal involvement of IFN-gamma in the pathogenesis of acetaminophen-induced acute liver injury. FASEB J 16:1227-1236PubMedGoogle Scholar
  97. Ito Y, Suzuki Y, Ogonuki H, Hiraishi H, Razandi M, Terano A, Harada T, Ivey KJ (1994) Role of iron and glutathione redox cycle in acetaminophen-induced cytotoxicity to cultured rat hepatocytes. Dig Dis Sci 39:1257-1264PubMedGoogle Scholar
  98. Ito Y, Bethea NW, Abril ER, McCuskey RS (2003) Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation 10:391-400PubMedGoogle Scholar
  99. Ito Y, Abril ER, Bethea NW, McCuskey RS (2004) Role of nitric oxide in hepatic microvascular injury elicited by acetaminophen in mice. Am J Physiol Gastrointest Liver Physiol 286:G60-G67PubMedGoogle Scholar
  100. Jaeschke H, Hasegawa T (2006) Role of neutrophils in acute inflammatory liver injury. Liver Int 26:912-919PubMedGoogle Scholar
  101. James LP, Farrar HC, Darville TL, Sullivan JE, Givens TG, Kearns GL, Wasserman GS, Simpson PM, Hinson JA (2001) Elevation of serum interleukin 8 levels in acetaminophen overdose in children and adolescents. Clin Pharmacol Ther 70:280-286PubMedGoogle Scholar
  102. James LP, Lamps LW, McCullough S, Hinson JA (2003a) Interleukin 6 and hepatocyte regeneration in acetaminophen toxicity in the mouse. Biochem Biophys Res Commun 309:857-863PubMedGoogle Scholar
  103. James LP, Letzig L, Simpson PM, Capparelli E, Roberts DW, Hinson JA, Davern TJ, Lee WM (2009) Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure. Drug Metab Dispos 37:1779-1784. Published online May 13, 2009; 10.1124/dmd.108.026195Google Scholar
  104. James LP, Mayeux PR, Hinson JA (2003b) Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 31:1499-1506PubMedGoogle Scholar
  105. James LP, McCullough SS, Knight TR, Jaeschke H, Hinson JA (2003c) Acetaminophen toxicity in mice lacking NADPH oxidase activity: role of peroxynitrite formation and mitochondrial oxidant stress. Free Radic Res 37:1289-1297PubMedGoogle Scholar
  106. James LP, McCullough SS, Lamps LW, Hinson JA (2003d) Effect of N-acetylcysteine on acetaminophen toxicity in mice: relationship to reactive nitrogen and cytokine formation. Toxicol Sci 75:458-467PubMedGoogle Scholar
  107. James LP, Kurten RC, Lamps LW, McCullough S, Hinson JA (2005) Tumour necrosis factor receptor 1 and hepatocyte regeneration in acetaminophen toxicity: a kinetic study of proliferating cell nuclear antigen and cytokine expression. Basic Clin Pharmacol Toxicol 97:8-14PubMedGoogle Scholar
  108. Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187:195-202PubMedGoogle Scholar
  109. Jollow DJ, Thorgeirsson SS, Potter WZ, Hashimoto M, Mitchell JR (1974) Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 12:251-271PubMedGoogle Scholar
  110. Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN, George JW, Pohl LR (2002) Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 15:1504-1513PubMedGoogle Scholar
  111. Kalthoff H, Roeder C, Brockhaus M, Thiele HG, Schmiegel W (1993) Tumor necrosis factor (TNF) up-regulates the expression of p75 but not p55 TNF receptors, and both receptors mediate, independently of each other, up-regulation of transforming growth factor alpha and epidermal growth factor receptor mRNA. J Biol Chem 268:2762-2766PubMedGoogle Scholar
  112. Kim CH, Cho YS, Chun YS, Park JW, Kim MS (2002) Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 90:E25-E33PubMedGoogle Scholar
  113. Kinnally KW, Antonsson B (2007) A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12:857-868PubMedGoogle Scholar
  114. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461-465PubMedGoogle Scholar
  115. Kon K, Kim JS, Jaeschke H, Lemasters JJ (2004) Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40:1170-1179PubMedGoogle Scholar
  116. Kon K, Ikejima K, Okumura K, Aoyama T, Arai K, Takei Y, Lemasters JJ, Sato N (2007) Role of apoptosis in acetaminophen hepatotoxicity. J Gastroenterol Hepatol 22(Suppl 1):S49-S52PubMedGoogle Scholar
  117. Koniaris LG, Zimmers-Koniaris T, Hsiao EC, Chavin K, Sitzmann JV, Farber JM (2001) Cytokine-responsive gene-2/IFN-inducible protein-10 expression in multiple models of liver and bile duct injury suggests a role in tissue regeneration. J Immunol 167:399-406PubMedGoogle Scholar
  118. Koop DR (1992) Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J 6:724-730PubMedGoogle Scholar
  119. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12-15PubMedGoogle Scholar
  120. Kyle ME, Miccadei S, Nakae D, Farber JL (1987) Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem Biophys Res Commun 149:889-896PubMedGoogle Scholar
  121. Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiodt FV, Ostapowicz G, Shakil AO, Lee WM (2005) Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42:1364-1372PubMedGoogle Scholar
  122. Laskin DL, Pilaro AM (1986) Potential role of activated macrophages in acetaminophen hepatotoxicity. I. Isolation and characterization of activated macrophages from rat liver. Toxicol Appl Pharmacol 86:204-215PubMedGoogle Scholar
  123. Laskin DL, Pilaro AM, Ji S (1986) Potential role of activated macrophages in acetaminophen hepatotoxicity. II. Mechanism of macrophage accumulation and activation. Toxicol Appl Pharmacol 86:216-226PubMedGoogle Scholar
  124. Laskin DL, Gardner CR, Price VF, Jollow DJ (1995) Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology 21:1045-1050PubMedGoogle Scholar
  125. Latchoumycandane C, Seah QM, Tan RC, Sattabongkot J, Beerheide W, Boelsterli UA (2006) Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes. Toxicol Appl Pharmacol 217:125-133PubMedGoogle Scholar
  126. Latchoumycandane C, Goh CW, Ong MM, Boelsterli UA (2007) Mitochondrial protection by the JNK inhibitor leflunomide rescues mice from acetaminophen-induced liver injury. Hepatology 45:412-421PubMedGoogle Scholar
  127. Lawson JA, Farhood A, Hopper RD, Bajt ML, Jaeschke H (2000) The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol Sci 54:509-516PubMedGoogle Scholar
  128. LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP, Hillan KJ, Ferrara N (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299:890-893PubMedGoogle Scholar
  129. Lemasters JJ (1998) The mitochondrial permeability transition: from biochemical curiosity to pathophysiological mechanism. Gastroenterology 115:783-786PubMedGoogle Scholar
  130. Li W, Liang X, Leu JI, Kovalovich K, Ciliberto G, Taub R (2001) Global changes in interleukin-6-dependent gene expression patterns in mouse livers after partial hepatectomy. Hepatology 33:1377-1386PubMedGoogle Scholar
  131. Li W, Liang X, Kellendonk C, Poli V, Taub R (2002) STAT3 contributes to the mitogenic response of hepatocytes during liver regeneration. J Biol Chem 277:28411-28417PubMedGoogle Scholar
  132. Lim SP, Andrews FJ, O’Brien PE (1995) Acetaminophen-induced microvascular injury in the rat liver: protection with misoprostol. Hepatology 22:1776-1781Google Scholar
  133. Limaye PB, Apte UM, Shankar K, Bucci TJ, Warbritton A, Mehendale HM (2003) Calpain released from dying hepatocytes mediates progression of acute liver injury induced by model hepatotoxicants. Toxicology & Applied Pharmacology 191(3):211-226Google Scholar
  134. Litovitz TL, Klein-Schwartz W, Rodgers GC Jr, Cobaugh DJ, Youniss J, Omslaer JC, May ME, Woolf AD, Benson BE (2002) 2001 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 20:391-452PubMedGoogle Scholar
  135. Liu ZX, Govindarajan S, Kaplowitz N (2004) Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology 127:1760-1774PubMedGoogle Scholar
  136. Liu ZX, Han D, Gunawan B, Kaplowitz N (2006) Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 43:1220-1230PubMedGoogle Scholar
  137. Louis H, Le Moine O, Peny MO, Gulbis B, Nisol F, Goldman M, Deviere J (1997a) Hepatoprotective role of interleukin 10 in galactosamine/lipopolysaccharide mouse liver injury. Gastroenterology 112:935-942PubMedGoogle Scholar
  138. Louis H, Le Moine O, Peny MO, Quertinmont E, Fokan D, Goldman M, Deviere J (1997b) Production and role of interleukin-10 in concanavalin A-induced hepatitis in mice. Hepatology 25:1382-1389PubMedGoogle Scholar
  139. Maeshima K, Takahashi T, Nakahira K, Shimizu H, Fujii H, Katayama H, Yokoyama M, Morita K, Akagi R, Sassa S (2004) A protective role of interleukin 11 on hepatic injury in acute endotoxemia. Shock 21:134-138PubMedGoogle Scholar
  140. Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43:S31-S44PubMedGoogle Scholar
  141. Masson MJ, Carpenter LD, Graf ML, Pohl LR (2008) Pathogenic role of natural killer T and natural killer cells in acetaminophen-induced liver injury in mice is dependent on the presence of dimethyl sulfoxide. Hepatology 48:889-897PubMedGoogle Scholar
  142. Masubuchi Y, Bourdi M, Reilly TP, Graf ML, George JW, Pohl LR (2003) Role of interleukin-6 in hepatic heat shock protein expression and protection against acetaminophen-induced liver disease. Biochem Biophys Res Commun 304:207-212PubMedGoogle Scholar
  143. Masubuchi Y, Suda C, Horie T (2005) Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 42:110-116PubMedGoogle Scholar
  144. Matsumaru K, Ji C, Kaplowitz N (2003) Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes. Hepatology 37:1425-1434PubMedGoogle Scholar
  145. McCuskey RS (2006) Sinusoidal endothelial cells as an early target for hepatic toxicants. Clin Hemorheol Microcirc 34:5-10PubMedGoogle Scholar
  146. Michael SL, Mayeux PR, Bucci TJ, Warbritton AR, Irwin LK, Pumford NR, Hinson JA (2001) Acetaminophen-induced hepatotoxicity in mice lacking inducible nitric oxide synthase activity. Nitric Oxide 5:432-441PubMedGoogle Scholar
  147. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60-66PubMedGoogle Scholar
  148. Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973a) Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmcol Exp Ther 187:185-194Google Scholar
  149. Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973b) Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 187:211-217PubMedGoogle Scholar
  150. Mochida S, Ishikawa K, Inao M, Shibuya M, Fujiwara K (1996) Increased expressions of vascular endothelial growth factor and its receptors, flt-1 and KDR/flk-1, in regenerating rat liver. Biochem Biophys Res Commun 226:176-179PubMedGoogle Scholar
  151. Moldeus P (1978) Paracetamol metabolism and toxicity in isolated hepatocytes from rat and mouse. Biochem Pharmacol 27:2859-2863PubMedGoogle Scholar
  152. Muldrew KL, James LP, Coop L, McCullough SS, Hendrickson HP, Hinson JA, Mayeux PR (2002) Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection. Drug Metab Dispos 30:446-451PubMedGoogle Scholar
  153. Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′, 7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575-1582PubMedGoogle Scholar
  154. Nicotera P, Rundgren M, Porubek DJ, Cotgreave I, Moldeus P, Orrenius S, Nelson SD (1989) On the role of Ca2+ in the toxicity of alkylating and oxidizing quinone imines in isolated hepatocytes. Chem Res Toxicol 2:46-50PubMedGoogle Scholar
  155. Nieminen AL, Byrne AM, Herman B, Lemasters JJ (1997) Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P) H and reactive oxygen species. Am J Physiol 272:C1286-C1294PubMedGoogle Scholar
  156. Oesch F, Steinberg P (1987) A comparative study of drug-metabolizing enzymes present in isolated rat liver parenchymal, Kupffer and endothelial cells. Biochem Soc Trans 15:372-373PubMedGoogle Scholar
  157. Osawa Y, Nagaki M, Banno Y, Brenner DA, Asano T, Nozawa Y, Moriwaki H, Nakashima S (2002) Tumor necrosis factor alpha-induced interleukin-8 production via NF-kappaB and phosphatidylinositol 3-kinase/Akt pathways inhibits cell apoptosis in human hepatocytes. Infect Immun 70:6294-6301PubMedGoogle Scholar
  158. Ostapowicz G, Fontana RJ, Schiodt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM (2002) Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 137:947-954PubMedGoogle Scholar
  159. Packer MA, Scarlett JL, Martin SW, Murphy MP (1997) Induction of the mitochondrial permeability transition by peroxynitrite. Biochem Soc Trans 25:909-914PubMedGoogle Scholar
  160. Papastefanou VP, Bozas E, Mykoniatis MG, Grypioti A, Garyfallidis S, Bartsocas CS, Nicolopoulou-Stamati P (2007) VEGF isoforms and receptors expression throughout acute acetaminophen-induced liver injury and regeneration. Arch Toxicol 81:729-741PubMedGoogle Scholar
  161. Peterson RG, Rumack BH (1977) Treating acute acetaminophen poisoning with acetylcysteine. JAMA 237:2406-2407PubMedGoogle Scholar
  162. Piperno E, Berssenbruegge DA (1976) Reversal of experimental paracetamol toxicosis with N-acetylcysteine. Lancet 2:738-739PubMedGoogle Scholar
  163. Potter DW, Hinson JA (1987) Mechanisms of acetaminophen oxidation to N-acetyl-P-benzoquinone imine by horseradish peroxidase and cytochrome P-450. J Biol Chem 262:966-973PubMedGoogle Scholar
  164. Potter WZ, Davis DC, Mitchell JR, Jollow DJ, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther 187:203-210PubMedGoogle Scholar
  165. Prescott LF, Critchley JA (1983) The treatment of acetaminophen poisoning. Annu Rev Pharmacol Toxicol 23:87-101PubMedGoogle Scholar
  166. Prescott LF, Roscoe P, Wright N, Brown SS (1971) Plasma-paracetamol half-life and hepatic necrosis in patients with paracetamol overdosage. Lancet 1:519-522PubMedGoogle Scholar
  167. Prescott LF, Park J, Ballantyne A, Adriaenssens P, Proudfoot AT (1977) Treatment of paracetamol (acetaminophen) poisoning with N-acetylcysteine. Lancet 2:432-434PubMedGoogle Scholar
  168. Pumford NR, Hinson JA, Potter DW, Rowland KL, Benson RW, Roberts DW (1989) Immunochemical quantitation of 3-(cystein-S-yl) acetaminophen adducts in serum and liver proteins of acetaminophen-treated mice. J Pharmacol Exp Ther 248:190-196PubMedGoogle Scholar
  169. Pumford NR, Hinson JA, Benson RW, Roberts DW (1990) Immunoblot analysis of protein containing 3-(cystein-S-yl) acetaminophen adducts in serum and subcellular liver fractions from acetaminophen-treated mice. Toxicol Appl Pharmacol 104:521-532PubMedGoogle Scholar
  170. Qiu Y, Benet LZ, Burlingame AL (1998) Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem 273:17940-17953PubMedGoogle Scholar
  171. Quiroga J, Prieto J (1993) Liver cytoprotection by prostaglandins. Pharmacol Ther 58:67-91PubMedGoogle Scholar
  172. Rafeiro E, Barr SG, Harrison JJ, Racz WJ (1994) Effects of N-acetylcysteine and dithiothreitol on glutathione and protein thiol replenishment during acetaminophen-induced toxicity in isolated mouse hepatocytes. Toxicology 93:209-224PubMedGoogle Scholar
  173. Raucy JL, Lasker JM, Lieber CS, Black M (1989) Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch Biochem Biophys 271:270-283PubMedGoogle Scholar
  174. Ray SD, Sorge CL, Raucy JL, Corcoran GB (1990) Early loss of large genomic DNA in vivo with accumulation of Ca2+ in the nucleus during acetaminophen-induced liver injury. Toxicol Appl Pharmacol 106:346-351PubMedGoogle Scholar
  175. Ray SD, Kamendulis LM, Gurule MW, Yorkin RD, Corcoran GB (1993) Ca2+ antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophen. FASEB J 7:453-463PubMedGoogle Scholar
  176. Ray SD, Mumaw VR, Raje RR, Fariss MW (1996) Protection of acetaminophen-induced hepatocellular apoptosis and necrosis by cholesteryl hemisuccinate pretreatment. J Pharmacol Exp Ther 279:1470-1483PubMedGoogle Scholar
  177. Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA (2005) Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther 312:509-516PubMedGoogle Scholar
  178. Reilly TP, Brady JN, Marchick MR, Bourdi M, George JW, Radonovich MF, Pise-Masison CA, Pohl LR (2001) A protective role for cyclooxygenase-2 in drug-induced liver injury in mice. Chem Res Toxicol 14:1620-1628PubMedGoogle Scholar
  179. Ren X, Carpenter A, Hogaboam C, Colletti L (2003) Mitogenic properties of endogenous and pharmacological doses of macrophage inflammatory protein-2 after 70% hepatectomy in the mouse. Am J Pathol 163:563-570PubMedGoogle Scholar
  180. Roberts DW, Pumford NR, Potter DW, Benson RW, Hinson JA (1987) A sensitive immunochemical assay for acetaminophen-protein adducts. J Pharmacol Exp Ther 241:527-533PubMedGoogle Scholar
  181. Roberts DW, Bucci TJ, Benson RW, Warbritton AR, McRae TA, Pumford NR, Hinson JA (1991) Immunohistochemical localization and quantification of the 3-(cystein-S-yl)-acetaminophen protein adduct in acetaminophen hepatotoxicity. Am J Pathol 138:359-371PubMedGoogle Scholar
  182. Rose PG (1969) Paracetamol overdose and liver damage. Br Med J 1:381-382Google Scholar
  183. Rumack BH, Peterson RG (1978) Acetaminophen overdose: incidence, diagnosis, and management in 416 patients. Pediatrics 62:898-903PubMedGoogle Scholar
  184. Rumack BH, Peterson RC, Koch GG, Amara IA (1981) Acetaminophen overdose. 662 cases with evaluation of oral acetylcysteine treatment. Arch Intern Med 141:380-385PubMedGoogle Scholar
  185. Sakaida I, Kayano K, Wasaki S, Nagatomi A, Matsumura Y, Okita K (1995) Protection against acetaminophen-induced liver injury in vivo by an iron chelator, deferoxamine. Scand J Gastroenterol 30:61-67PubMedGoogle Scholar
  186. Salas VM, Corcoran GB (1997) Calcium-dependent DNA damage and adenosine 3′ 5′-cyclic monophosphate- independent glycogen phosphorylase activation in an in vitro model of acetaminophen-induced liver injury. Hepatology 25:1432-1438PubMedGoogle Scholar
  187. Salminen WF Jr, Voellmy R, Roberts SM (1998) Effect of N-acetylcysteine on heat shock protein induction by acetaminophen in mouse liver. J Pharmacol Exp Ther 286:519-524PubMedGoogle Scholar
  188. Schiodt FV, Ott P, Christensen E, Bondesen S (2002) The value of plasma acetaminophen half-life in antidote-treated acetaminophen overdosage. Clin Pharmacol Ther 71:221-225PubMedGoogle Scholar
  189. Schnellmann JG, Pumford NR, Kusewitt DF, Bucci TJ, Hinson JA (1999) Deferoxamine delays the development of the hepatotoxicity of acetaminophen in mice. Toxicol Lett 106:79-88PubMedGoogle Scholar
  190. Shen HM, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 20:1589-1598PubMedGoogle Scholar
  191. Shen W, Kamendulis LM, Ray SD, Corcoran GB (1991) Acetaminophen-induced cytotoxicity in cultured mouse hepatocytes: correlation of nuclear Ca2+ accumulation and early DNA fragmentation with cell death. Toxicol Appl Pharmacol 111:242-254PubMedGoogle Scholar
  192. Shen W, Kamendulis LM, Ray SD, Corcoran GB (1992) Acetaminophen-induced cytotoxicity in cultured mouse hepatocytes: effects of Ca(2+)-endonuclease, DNA repair, and glutathione depletion inhibitors on DNA fragmentation and cell death. Toxicol Appl Pharmacol 112:32-40PubMedGoogle Scholar
  193. Sies H, de Groot H (1992) Role of reactive oxygen species in cell toxicity. Toxicol Lett 64-65(Spec No):547-551Google Scholar
  194. Sies H, Sharov VS, Klotz LO, Briviba K (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 272:27812-27817PubMedGoogle Scholar
  195. Simpson KJ, Lukacs NW, McGregor AH, Harrison DJ, Strieter RM, Kunkel SL (2000) Inhibition of tumour necrosis factor alpha does not prevent experimental paracetamol-induced hepatic necrosis. J Pathol 190:489-494PubMedGoogle Scholar
  196. LP James, Capparelli EV, Hinson JA, Dalvern TJ, Lee WM (2007) Pharmacokinetic analysis of acetaminophen protein adducts in adults with acute liver failure. Clin Pharmacol Ther 81:2Google Scholar
  197. Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH (1988) Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N Engl J Med 319:1557-1562Google Scholar
  198. Snawder JE, Roe AL, Benson RW, Roberts DW (1994) Loss of CYP2E1 and CYP1A2 activity as a function of acetaminophen dose: relation to toxicity. Biochem Biophys Res Commun 203:532-539PubMedGoogle Scholar
  199. Steinberg P, Schlemper B, Molitor E, Platt KL, Seidel A, Oesch F (1990) Rat liver endothelial and Kupffer cell-mediated mutagenicity of polycyclic aromatic hydrocarbons and aflatoxin B1. Environ Health Perspect 88:71-76PubMedGoogle Scholar
  200. Tamura M, Arakaki N, Tsubouchi H, Takada H, Daikuhara Y (1993) Enhancement of human hepatocyte growth factor production by interleukin-1 alpha and -1 beta and tumor necrosis factor-alpha by fibroblasts in culture. J Biol Chem 268:8140-8145PubMedGoogle Scholar
  201. Tee LB, Boobis AR, Huggett AC, Davies DS (1986) Reversal of acetaminophen toxicity in isolated hamster hepatocytes by dithiothreitol. Toxicol Appl Pharmacol 83:294-314PubMedGoogle Scholar
  202. Thompson RP, Clark R, Willson RA, Borirakchanyavat V, Widdop B, Goulding R, Williams R (1972) Hepatic damage from overdose of paracetamol. Gut 13:836Google Scholar
  203. Thummel KE, Lee CA, Kunze KL, Nelson SD, Slattery JT (1993) Oxidation of acetaminophen to N-acetyl-p-aminobenzoquinone imine by human CYP3A4. Biochem Pharmacol 45:1563-1569PubMedGoogle Scholar
  204. Tirmenstein MA, Nelson SD (1989) Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse liver. J Biol Chem 264:9814-9819PubMedGoogle Scholar
  205. Trepicchio WL, Bozza M, Bouchard P, Dorner AJ (2001) Protective effect of rhIL-11 in a murine model of acetaminophen-induced hepatotoxicity. Toxicol Pathol 29:242-249PubMedGoogle Scholar
  206. Tsokos KJ (1989) Evidence in vivo for elevation of intracellular free Ca2+ in the liver after diquat, acetaminophen, and CCl4. Biochem Pharmacol 38:3061-3065Google Scholar
  207. Vendemiale G, Grattagliano I, Altomare E, Turturro N, Guerrieri F (1996) Effect of acetaminophen administration on hepatic glutathione compartmentation and mitochondrial energy metabolism in the rat. Biochem Pharmacol 52:1147-1154PubMedGoogle Scholar
  208. Walker RM, Racz WJ, McElligott TF (1980) Acetaminophen-induced hepatotoxicity in mice. Lab Invest 42:181-189PubMedGoogle Scholar
  209. Walker RM, Racz WJ, McElligott TF (1983) Scanning electron microscopic examination of acetaminophen-induced hepatotoxicity and congestion in mice. Am J Pathol 113:321-330Google Scholar
  210. Walker RM, Racz WJ, McElligott TF (1985) Acetaminophen-induced hepatotoxic congestion in mice. Hepatology 5:233-240PubMedGoogle Scholar
  211. Weis M, Kass GEN, Orrenius S, Moldeus P (1992) N-acetyl-p-benzoquinone imine induces Ca2+ release from mitochondria by stimulating pyridine nucleotide hydrolysis. J Biol Chem 267:804-809PubMedGoogle Scholar
  212. Weis M, Kass GE, Orrenius S (1994) Further characterization of the events involved in mitochondrial Ca2+ release and pore formation by prooxidants. Biochem Pharmacol 47:2147-2156PubMedGoogle Scholar
  213. Welch KD, Reilly TP, Bourdi M, Hays T, Pise-Masison CA, Radonovich MF, Brady JN, Dix DJ, Pohl LR (2006) Genomic identification of potential risk factors during acetaminophen-induced liver disease in susceptible and resistant strains of mice. Chem Res Toxicol 19:223-233PubMedGoogle Scholar
  214. Wendel A, Feuerstein S, Konz KH (1979) Acute paracetamol intoxication of starved mice leads to lipid peroxidation in vivo. Biochem Pharmacol 28:2051-2055PubMedGoogle Scholar
  215. Yamada Y, Kirillova I, Peschon JJ, Fausto N (1997) Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci USA 94:1441-1446PubMedGoogle Scholar
  216. Yamada M, Kim S, Egashira K, Takeya M, Ikeda T, Mimura O, Iwao H (2003) Molecular mechanism and role of endothelial monocyte chemoattractant protein-1 induction by vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 23:1996-2001PubMedGoogle Scholar
  217. Yee SB, Bourdi M, Masson MJ, Pohl LR (2007) Hepatoprotective role of endogenous interleukin-13 in a murine model of acetaminophen-induced liver disease. Chem Res Toxicol 20:734-744PubMedGoogle Scholar
  218. Younes M, Cornelius S, Siegers CP (1986) Ferrous ion supported in vivo lipid peroxidation induced by paracetamol - its relation to hepatotoxicity. Res Commun Chem Pathol Pharmacol 51:89-99PubMedGoogle Scholar
  219. Zingarelli B, Yang Z, Hake PW, Denenberg A, Wong HR (2001) Absence of endogenous interleukin 10 enhances early stress response during post-ischaemic injury in mice intestine. Gut 48:610-622PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jack A. Hinson
    • 1
    Email author
  • Dean W. Roberts
  • Laura P. James
  1. 1.Department of Pharmacology and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations