Skip to main content

Abstract

Bioinformatics programs are highly accurate in identifying protein families directly from protein sequences, even when the sequence identity is very low. The transthyretin-related proteins (TRPs) are one example of a protein family that has been identified. Whereas transthyretin (TTR) is well-characterized both in vivo and in vitro, only recently has research focused on the TRPs. Their structural similarity to TTR has been verified, and their function as a 5-hydroxyisourate (HIU) hydrolase has been established. In this review we discuss structural aspects of TRP function. We also discuss the still unknown transthyretin-like proteins (TLPs) that are seemingly unique to nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cole C, Barber JD, Barton GJ. 2008. The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201.

    Article  CAS  PubMed  Google Scholar 

  • Colon W, Kelly JW. 1992. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31:8654–8660.

    Article  CAS  PubMed  Google Scholar 

  • Cusa E, Obradors N, Baldoma L, Badia J, Aguilar J. 1999. Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli. J Bacteriol 181:7479–7484.

    CAS  PubMed  Google Scholar 

  • Eneqvist T, Lundberg E, Nilsson L, Abagyan R, Sauer-Eriksson AE. 2003. The transthyretin-related protein family. Eur J Biochem 270:518–532.

    Article  CAS  PubMed  Google Scholar 

  • Fisher SH. 1999. Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol Microbiol 32:223–232.

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Hsu AL, Dillin A, Kenyon C. 2005. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128.

    Article  CAS  PubMed  Google Scholar 

  • Hennebry SC, Law RH, Richardson SJ, Buckle AM, Whisstock JC. 2006a. The crystal structure of the transthyretin-like protein from Salmonella dublin, a prokaryote 5-hydroxyisourate hydrolase. J Mol Biol 359:1389–1399.

    Article  CAS  PubMed  Google Scholar 

  • Hennebry SC, Wright HM, Likic VA, Richardson SJ. 2006b. Structural and functional evolution of transthyretin and transthyretin-like proteins. Proteins 64:1024–1045.

    Article  CAS  PubMed  Google Scholar 

  • Hornberg A, Eneqvist T, Olofsson A, Lundgren E, Sauer-Eriksson AE. 2000. A comparative analysis of 23 structures of the amyloidogenic protein transthyretin. J Mol Biol 302:649–669.

    Article  CAS  PubMed  Google Scholar 

  • Jung DK, Lee Y, Park SG, Park BC, Kim GH, Rhee S. 2006. Structural and functional analysis of PucM, a hydrolase in the ureide pathway and a member of the transthyretin-related protein family. Proc Natl Acad Sci USA 103:9790–9795.

    Article  CAS  PubMed  Google Scholar 

  • Kahn K, Tipton PA. 1998. Spectroscopic characterization of intermediates in the urate oxidase reaction. Biochemistry 37:11651–11659.

    Article  CAS  PubMed  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL. 2004. A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036.

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Lee DH, Kho CW, Lee AY, Jang M, Cho S, Lee CH, Lee JS, Myung PK, Park BC, Park SG. 2005. Transthyretin-related proteins function to facilitate the hydrolysis of 5-hydroxyisourate, the end product of the uricase reaction. FEBS Lett 579:4769–4774.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Park BC, Lee do H, Bae KH, Cho S, Lee CH, Lee JS, Myung PK, Park SG. 2006. Mouse transthyretin-related protein is a hydrolase which degrades 5-hydroxyisourate, the end product of the uricase reaction. Mol Cells 22:141–145.

    CAS  PubMed  Google Scholar 

  • Liz MA, Faro CJ, Saraiva MJ, Sousa MM. 2004. Transthyretin, a new cryptic protease. J Biol Chem 279:21431–21438.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg E, Backstrom S, Sauer UH, Sauer-Eriksson AE. 2009. The transthyretin-related protein: structural investigation of a novel protein family. J Struct Biol 155:445–457.

    Article  Google Scholar 

  • Lundberg E, Olofsson A, Westermark GT, Sauer-Eriksson AE. 2009. Fibril-formation properties of human and piscine transthyretin, and E. coli transthyretin-related protein. FEBS J 276(7):1999–2011.

    Google Scholar 

  • Nygaard P. 1983. Utilization of preformed purine bases and nucleosides. In: A. Munch-Petersen (ed.), Metabolism of nucleotides, nucleosides and nucleobases in microorganism. Academic Press, London, UK p. 27–93.

    Google Scholar 

  • Prapunpoj P, Yamauchi K, Nishiyama N, Richardson SJ, Schreiber G. 2000. Evolution of structure, ontogeny of gene expression, and function of Xenopus laevis transthyretin. Am J Physiol Regul Integr Comp Physiol 279:R2026–R2041.

    CAS  PubMed  Google Scholar 

  • Ramazzina I, Folli C, Secchi A, Berni R, Percudani R. 2006. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat Chem Biol 2:144–148.

    Article  CAS  PubMed  Google Scholar 

  • Santos SD, Costa R, Teixeira PF, Gottesman M, Cardoso I, Saraiva MJ. 2008. Amyloidogenic properties of transthyretin-like protein (TLP) from Escherichia coli. FEBS Lett 582:2893–2898.

    Article  CAS  PubMed  Google Scholar 

  • Sarma AD, Serfozo P, Kahn K, Tipton PA. 1999. Identification and purification of hydroxyisourate hydrolase, a novel ureide-metabolizing enzyme. J Biol Chem 274:33863–33865.

    Article  CAS  PubMed  Google Scholar 

  • Schultz AC, Nygaard P, Saxild HH. 2001. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J Bacteriol 183:3293–3302.

    Article  CAS  PubMed  Google Scholar 

  • Sonnhammer EL, Durbin R. 1997. Analysis of protein domain families in Caenorhabditis elegans. Genomics 46:200–216.

    Article  CAS  PubMed  Google Scholar 

  • Wojtczak A, Cody V, Luft JR, Pangborn W. 2001. Structure of rat transthyretin (rTTR) complex with thyroxine at 2.5 A resolution: first non-biased insight into thyroxine binding reveals different hormone orientation in two binding sites. Acta Crystallogr D Biol Crystallogr 57:1061–1070.

    Article  CAS  PubMed  Google Scholar 

  • Xi H, Schneider BL, Reitzer L. 2000. Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol 182:5332–5341.

    Article  CAS  PubMed  Google Scholar 

  • Zanotti G, Cendron L, Ramazzina I, Folli C, Percudani R, Berni R. 2006. Structure of zebra fish HIUase: insights into evolution of an enzyme to a hormone transporter. J Mol Biol 363:1–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Uwe H. Sauer and Tobias Hainzl for valuable discussions, and Terese Bergfors for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elisabeth Sauer-Eriksson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sauer-Eriksson, A.E., Linusson, A., Lundberg, E. (2009). Transthyretin-Related and Transthyretin-like Proteins. In: Richardson, S.J., Cody, V. (eds) Recent Advances in Transthyretin Evolution, Structure and Biological Functions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00646-3_7

Download citation

Publish with us

Policies and ethics