Skip to main content

Transthyretin Null Mice as a Model to Study the Involvement of Transthyretin in Neurobiology: From Neuropeptide Processing to Nerve Regeneration

  • Chapter
  • First Online:
Recent Advances in Transthyretin Evolution, Structure and Biological Functions

Abstract

Physiologically, TTR is mainly acknowledged for being the plasma transporter of thyroxine (T4) and retinol. Under pathological conditions, several mutations in TTR are associated with familial amyloid polyneuropathy (FAP), a neurodegenerative disorder characterized by deposition of TTR amyloid fibrils, particularly in the peripheral nervous system (PNS), where it leads to axonal loss and neuronal death. Although it is well established that TTR synthesis occurs in the liver and in the choroid plexus (the sources of TTR in the plasma and cerebrospinal fluid –CSF, respectively), the origin of TTR deposited in the PNS of FAP patients is unknown. Under physiological conditions TTR has access to the nerve both through the blood and CSF. Additionally, a function for TTR in nerve biology could explain its preferential deposition, when mutated, in the PNS. In this respect, several studies using TTR knockout (KO) mice revealed new TTR functions specifically related to the nervous system: (1) the absence of TTR is associated with reduced signs of depressive-like behavior and with memory impairment; (2) TTR participates in sensorimotor performance; (3) TTR regulates neuropeptide maturation and, (4) TTR enhances nerve regeneration. In the following pages, these novel TTR functions related to the nervous system, as well as the use of TTR KO mice as a means to study them, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleshire SL, Bradley CA, Richardson LD, Parl FF (1983) Localization of human prealbumin in choroid plexus epithelium. J Histochem Cytochem 31:608–612

    CAS  PubMed  Google Scholar 

  • Andrade C (1952) A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75:408–427

    Article  CAS  PubMed  Google Scholar 

  • Berni R, Malpeli G, Folli C, Murrell JR, Liepnieks JJ, Benson MD (1994) The Ile-84 → Ser amino acid substitution in transthyretin interferes with the interaction with plasma retinol-binding protein. J Biol Chem 269:23395–23398

    CAS  PubMed  Google Scholar 

  • Billington CJ, Briggs JE, Harker S, Grace M, Levine AS (1994) Neuropeptide Y in hypothalamic paraventricular nucleus: a center coordinating energy metabolism. Am J Physiol 266: R1765–R1770

    CAS  PubMed  Google Scholar 

  • Brouillette J, Quirion R (2007) Transthyretin: a key gene involved in the maintenance of memory capacities during aging. Neurobiol Aging 29:1721–1732

    Article  PubMed  Google Scholar 

  • Choi SH, Leight SN, Lee VM, Li T, Wong PC, Johnson JA, Saraiva MJ, Sisodia SS (2007) Accelerated Abeta deposition in APPswe/PS1deltaE9 mice with hemizygous deletions of TTR (transthyretin). J Neurosci 27:7006–7010

    Article  CAS  PubMed  Google Scholar 

  • Costa R, Ferreira-da-Silva F, Saraiva MJ, Cardoso I (2008) Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor. PLoS ONE 3:e2899

    Article  PubMed  Google Scholar 

  • Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, Gottesman ME, Robertson EJ (1993) Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA 90:2375–2379

    Article  CAS  PubMed  Google Scholar 

  • Esteban J, Chover AJ, Sanchez PA, Mico JA, Gibert-Rahola J (1989) Central administration of neuropeptide Y induces hypothermia in mice. Possible interaction with central noradrenergic systems. Life Sci 45:2395–2400

    CAS  Google Scholar 

  • Fleming CE, Saraiva MJ, Sousa MM (2007) Transthyretin enhances nerve regeneration. J Neurochem 103:831–839

    Article  CAS  PubMed  Google Scholar 

  • Fraboulet S, Boudouresque F, Delfino C, Fina F, Oliver C, Ouafik L (1996) Effect of thyroid hormones on peptidylglycine alpha-amidating monooxygenase gene expression in anterior pituitary gland: transcriptional studies and messenger ribonucleic acid stability. Endocrinology 137:5493–5501

    Article  CAS  PubMed  Google Scholar 

  • Gitlin D, Gitlin JD (1975) Fetal and neonatal development of human plasma proteins. In: Putnam FW (ed) The plasma proteins, Vol II, 2nd edn. Academic Press, New York

    Google Scholar 

  • Harms PJ, Tu GF, Richardson SJ, Aldred AR, Jaworowski A, Schreiber G (1991) Transthyretin (prealbumin) gene expression in choroid plexus is strongly conserved during evolution of vertebrates. Comp Biochem Physiol B 99:239–249

    Article  CAS  PubMed  Google Scholar 

  • Heilig M (2004) The NPY system in stress, anxiety and depression. Neuropeptides 38:213–224

    Article  CAS  PubMed  Google Scholar 

  • Herzog H (2003) Neuropeptide Y and energy homeostasis: insights from Y receptor knockout models. Eur J Pharmacol 480:21–29

    Article  CAS  PubMed  Google Scholar 

  • Inui A, Okita M, Nakajima M, Momose K, Ueno N, Teranishi A, Miura M, Hirosue Y, Sano K, Sato M, Watanabe M, Sakai T, Watanabe T, Ishida K, Silver J, Baba S, Kasuga M (1998) Anxiety-like behavior in transgenic mice with brain expression of neuropeptide Y. Proc Assoc Am Physicians 110:171–182

    CAS  PubMed  Google Scholar 

  • Kotz CM, Briggs JE, Grace MK, Levine AS, Billington CJ (1998) Divergence of the feeding and thermogenic pathways influenced by NPY in the hypothalamic PVN of the rat. Am J Physiol 275:R471–R477

    CAS  PubMed  Google Scholar 

  • Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120:701–713

    Article  CAS  PubMed  Google Scholar 

  • Liz MA, Sousa MM (2005) Deciphering cryptic proteases. Cell Mol Life Sci 62:989–1002

    Article  CAS  PubMed  Google Scholar 

  • Monaco HL, Mancia F, Rizzi M, Coda A (1995) Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268:1039–1041

    Article  CAS  PubMed  Google Scholar 

  • Liz MA, Faro CJ, Saraiva MJ, Sousa MM (2004) Transthyretin, a new cryptic protease. J Biol Chem 279:21431–21438

    Article  CAS  PubMed  Google Scholar 

  • Liz MA, Sousa MM (2005) Deciphering cryptic proteases. Cell Mol Life Sci 62:989–1002

    Article  CAS  PubMed  Google Scholar 

  • Liz MA, Gomes CM, Saraiva MJ, Sousa MM (2007) ApoA-I cleaved by transthyretin has reduced ability to promote cholesterol efflux and increased amyloidogenicity. J Lipid Res 48:2385–2395

    Article  CAS  PubMed  Google Scholar 

  • Nunes AF, Saraiva MJ, Sousa MM (2006) Transthyretin knockouts are a new mouse model for increased neuropeptide Y. FASEB J 20:166–168

    CAS  PubMed  Google Scholar 

  • Palha JA (2002) Transthyretin as a thyroid hormone carrier: function revisited. Clin Chem Lab Med 40:1292–1300

    Article  CAS  PubMed  Google Scholar 

  • Palha JA, Episkopou V, Maeda S, Shimada K, Gottesman ME, Saraiva MJM (1994) Thyroid hormone metabolism in a transthyretin-null mouse strain. J Biol Chem 269:33135–33139

    CAS  PubMed  Google Scholar 

  • Palha JA, Hays MT, Morreale de Escobar G, Episkopou V, Gottesman ME, Saraiva MJ (1997) Transthyretin is not essential for thyroxine to reach the brain and other tissues in transthyretin-null mice. Am J Physiol 272:E485–E493

    CAS  PubMed  Google Scholar 

  • Palha JA, Fernandes R, de Escobar GM, Episkopou V, Gottesman M, Saraiva MJ (2000) Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: study in a transthyretin-null mouse model. Endocrinology 141:3267–3272

    Article  CAS  PubMed  Google Scholar 

  • Pedrazzini T, Pralong F, Grouzmann E (2003) Neuropeptide Y: the universal soldier. Cell Mol Life Sci 60:350–377

    Article  CAS  PubMed  Google Scholar 

  • Prigge ST, Mains RE, Eipper BA, Amzel LM (2000) New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell Mol Life Sci 57:1236–1259

    Article  CAS  PubMed  Google Scholar 

  • Refetoff S, Dwulet FE, Benson MD (1986) Reduced affinity for thyroxine in two of three structural thyroxine-binding prealbumin variants associated with familial amyloidotic polyneuropathy. J Clin Endocrinol Metab 63:1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Richardson SJ, Bradley AJ, Duan W, Wettenhall RE, Harms PJ, Babon JJ, Southwell BR, Nicol S, Donnellan S, Schreiber G (1994) Evolution of marsupial and other vertebrate thyroxine-binding plasma proteins. Am J Physiol 266:R1359–R1370

    CAS  PubMed  Google Scholar 

  • Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711–713

    Article  CAS  PubMed  Google Scholar 

  • Schreiber G (2002) The evolution of transthyretin synthesis in the choroid plexus. Clin Chem Lab Med 40:1200–1210

    Article  CAS  PubMed  Google Scholar 

  • Sousa JC, Grandela C, Fernandez-Ruiz J, de Miguel R, de Sousa L, Magalhaes AI, Saraiva MJ, Sousa N, Palha JA (2004a) Transthyretin is involved in depression-like behaviour and exploratory activity. J Neurochem 88:1052–1058

    Article  CAS  PubMed  Google Scholar 

  • Sousa JC, Marques F, Dias-Ferreira E, Cerqueira JJ, Sousa N, Palha JA (2007) Transthyretin influences spatial reference memory. Neurobiol Learn Mem 88:381–385

    Article  CAS  PubMed  Google Scholar 

  • Sousa MM, Berglund L, Saraiva MJ (2000) Transthyretin in high density lipoproteins: association with apolipoprotein A-I. J Lipid Res 41:58–65

    CAS  PubMed  Google Scholar 

  • Sousa MM, Monteiro F, Saraiva MJ (2004b) Lack of amyloid deposition in the peripheral nervous system of transgenic mice expressing human mutant transthyretin in neurons. FENS Abstracts 2:A159.14.

    Google Scholar 

  • Thiele TE, Marsh DJ, Ste Marie L, Bernstein IL, Palmiter RD (1998) Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature 396:366–369

    Article  CAS  PubMed  Google Scholar 

  • Thorsell A, Michalkiewicz M, Dumont Y, Quirion R, Caberlotto L, Rimondini R, Mathe AA, Heilig M (2000) Behavioral insensitivity to restraint stress, absent fear suppression of behavior and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression. Proc Natl Acad Sci USA 97:12852–12857

    Article  CAS  PubMed  Google Scholar 

  • Wati H, Kawarabayashi T, Matsubara E, Kasai A, Hirasawa T, Kubota T, Harigaya Y, Shoji M, Maeda S (2008) Transthyretin Accelerates Vascular Abeta Deposition in a Mouse Model of Alzheimer's Disease. Brain Pathol. 19:48–57

    Article  PubMed  Google Scholar 

  • Wei S, Episkopou V, Piantedosi R, Maeda S, Shimada K, Gottesman ME, Blaner WS (1995) Studies on the metabolism of retinol and retinol-binding protein in transthyretin-deficient mice produced by homologous recombination. J Biol Chem 270:866–870

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Mendes Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fleming, C.E., Nunes, A.F., Liz, M.A., Sousa, M.M. (2009). Transthyretin Null Mice as a Model to Study the Involvement of Transthyretin in Neurobiology: From Neuropeptide Processing to Nerve Regeneration. In: Richardson, S.J., Cody, V. (eds) Recent Advances in Transthyretin Evolution, Structure and Biological Functions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00646-3_19

Download citation

Publish with us

Policies and ethics