Skip to main content

Histidine 31: The Achilles' Heel of Human Transthyretin. Microheterogeneity is Not Enough to Understand the Molecular Causes of Amyloidogenicity

  • Chapter
  • First Online:

Abstract

The microheterogeneity of human transthyretin (TTR) is mainly one of ligand and amino acid substitutions. These substitutions modify the conformational stability of monomers, dimers, and tetramers and may eventually result in unfolding–refolding transitions with the endpoint of amyloidosis. In this chapter we focus on a structural peculiarity of human TTR, i.e., a hydrogen bridge between His31 (β-strand B) and Ser46 (β-strand C), which appears to be the vulnerable site for changes of pH within a range (pH 7.4–6.5) observed under conditions of interstitial acidosis. We present arguments in favor of a cooperative interaction of all sites in the TTR monomer in modifying its conformational stability and reversible unfolding-refolding transitions which also affect the dimer and tetramer. We postulate that the unfolded monomer is the pool from which amyloidogenic aggregates are generated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATTR:

Amyloidogenic transthyretin

CA:

Carrier ampholytes

DTT:

Dithiothreitol

FAP:

Familial amyloidotic polyneuropathy

HEPES:

2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid

IEF:

Isoelectric focusing

MOPS:

3-(N-Morpholino)-propanesulfonic acid

PAGE:

Polyacrylamide gel electrophoresis

PIPES:

1,4-Piperazinediethane sulfonic acid

RBP:

Retinol-binding protein

SDS:

Sodium dodecylsulfate

TTR:

Transthyretin

References

  • Agulló L, Garcia-Dorado D, Escalona N, Inserte J, Ruiz-Meana M, Barrabeé JA, Mirabet M, Pina P, Soler-Soler J (2002) Hypoxia and acidosis impair cGMP synthesis in microvascular coronary endothelial cells. Am J Physiol Heart Circ Physiol 383:H917–H925

    Google Scholar 

  • Altland K, Benson MD, Costello CE, Ferlini A, Hazenberg BPC, Hund E, Kristen AV, Linke RP, Merlini G, Salvi F, Saraiva MJ, Singer R, Skinner M, Winter P (2007) Genetic microheterogeneity of human transthyretin detected by IEF. Electrophoresis 28:2053–2064

    Article  Google Scholar 

  • Altland K, Kast C, Rauh S, Sgraja T (1982) Demonstration of prealbumin, apolipoprotein AI and 7S-beta1-globulin from human blood by double one-dimensional electrophoresis. In: Peeters H (ed) Protides of the biological fluids. Vol 30. Pergamon Press, Oxford, pp 595–598

    Google Scholar 

  • Altland K, Winter P (1999) Potential treatment of transthyretin-type amyloidosis by sulfite. Neurogenetics 2:183–188

    Article  Google Scholar 

  • Altland K, Winter P, Saraiva MJM, Suhr O (2004) Sulfite and base for the treatment of familial amyloidotic polyneuropathy: two additive approaches to stabilize the conformation of human amyloidogenic transthyretin. Neurogenetics 5:61–67

    Article  Google Scholar 

  • Altland K, Winter P, Sauerborn MK (1999) Electrically neutral microheterogeneity of human plasma transthyretin (prealbumin) detected by isoelectric focusing in urea gradients. Electrophoresis 20:1349–1364

    Article  Google Scholar 

  • Alves IL, Altland K, Almeida MR, Winter P, Saraiva MJ (1997) Screening and biochemical characterization of transthyretin variants in the Portuguese population. Human Mutat 9: 226–233

    Article  CAS  Google Scholar 

  • Benson MD (2003) The hereditary amyloidoses. Best Practice Res Clin Rheumatol 17:909–927

    Article  CAS  Google Scholar 

  • Blake CCF, Deisow MJ, Oatley SJ, Rérat B, Rérat C (1978) Structure of prealbumin: secondary, tertiary and quarternary interactions determined by Fourier Refinement at 1.8 Ǻ. J Mol Biol 121:339–356

    Article  CAS  PubMed  Google Scholar 

  • Blake C, Serpell L (1996) Synchroton X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure 4:989–998

    Article  CAS  PubMed  Google Scholar 

  • Brack CM, Duan W, Hulbert AJ, Schreiber G (1995) Wallaby transthyretin. Comp Biochem Physiol 110B:523–529

    CAS  Google Scholar 

  • Colon W, Kelly JW (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31:8654–8660

    Article  CAS  PubMed  Google Scholar 

  • Connors LH, Lim A, Amareth L, Prokaeva T, Roskens VA, Costello CE (2003) Tabulation of human transthyretin (TTR) variants, 2003. Amyloid: J Protein Folding Disord 10:160–184

    CAS  Google Scholar 

  • Cornwell GG, Murdoch WL, Kyle RA, Wetsermark P, Pitkänen P (1983) Frequency and distribution of senile cadiovascular Amyloid. Am J Med 75:618–623

    Article  PubMed  Google Scholar 

  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Kurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nature Struct Mol Biol 15:558–566

    Article  CAS  Google Scholar 

  • Feldin P, Fex G (1984) The increased negative charge of prealbumin in cerebrospinal fluid is acquired in vitro by oxidation of the cysteinylated residue without formation of disulfides. Scand J Clin Lab Invest 44:231–238

    Article  Google Scholar 

  • Fitch NJS, Akbari MT, Ramsden DB (1991) An inherited non-amyloidogenic transthyretin variant, [Ser6]-TTR, with increased thyroxine-binding affinity, characterized by DNA sequencing. J Endocrinol 129:309–313

    Article  CAS  PubMed  Google Scholar 

  • Gales L, Saraiva MJ, Damas AM (2007) Structural basis for the protective role of sulfite against transthyretin amyloid formation. Biochim Biophys Acta 1774:59–64

    CAS  PubMed  Google Scholar 

  • Hack V, Breitkreuz R, Kinscherf R, Röhrer H, Bärtsch P, Taut F, Benner A, Dröge W (1998) The redox state as a correlate of senescence and wasting and as a target for therapeutic intervention. Blood 92:59–67

    CAS  PubMed  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high resolution measurements reveal a lack of correlation. Nat Med 3: 177–182

    Article  CAS  PubMed  Google Scholar 

  • Hörnberg A, Eneqvist T, Olofsson A, Lundgren E, Sauer-Eriksson AE (2000) A comparative analysis of 23 structures of the amyloidogenic protein transthyretin. J Mol Biol 22:649–669

    Article  Google Scholar 

  • Holmgren G, Ando Y, Wikström L, Rygh A, Suhr O (1997) Discordant symptoms in monozygotic twins with familial amyloidotic polyneuropathy (FAP) (TTR met30). Amyloid: J Protein Folding Disord 4:178–180

    CAS  Google Scholar 

  • Hunstein W (2007) Epigallocathechin-3-gallate in AL amyloidosis: a new therapeutic option? Blood 110:2216 (letter)

    Article  CAS  PubMed  Google Scholar 

  • Jacobson DR, McFarlin DE, Kane I, Buxbaum JN (1992) Transthyretin Pro55, a variant associated with early-onset, aggressive, diffuse amyloidosis with cardiac and neurological involvement. Hum Genet 89:353–356

    Article  CAS  PubMed  Google Scholar 

  • Jenne DE, Denzel K, Blätzinger P, Winter P, Obermaier B, Linke RP, Altland K (1996) A new isoleucine substitution of Val-20 in transthyretin tetramers selectively impairs dime-dimer contacts and causes systemic amyloidosis. Proc Natl Acad Sci USA 93:6302–6307

    Article  CAS  PubMed  Google Scholar 

  • Jones DP (2006) Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 9:169–181

    Article  CAS  PubMed  Google Scholar 

  • Kanda Y, Goodman DS, Canfield RE, Morgan FJ (1974) The amino acid sequence of human plasma prealbumin. J Biol Chem 249:6796–6805

    CAS  PubMed  Google Scholar 

  • Kishikawa M, Nakanishi T, Miyasaki A, Shimizu A (1999) A simple and reliable method of detecting variant transthyretins by mutidimensional liquid chromatography coupled with electrospray ionization mass spectrometry. Amyloid: J Protein Folding Disord 6:48–53

    CAS  Google Scholar 

  • Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA 99:12825–12830

    Article  CAS  PubMed  Google Scholar 

  • Kyle RA, Gertz MA, Linke RP (1992) Amyloid localized to tenosynovium at carpal tunnel release. Immunohistochemical identification of amyloid type. Am J Clin Pathol 97:250–253

    CAS  PubMed  Google Scholar 

  • Kyle RA, Spittell PC, Gertz MA, Li CY, Edwards WD, Olson LJ, Thibodeau SN (1996) The premortem recognition of systemic senile amyloidosis with cardiac involvement. Am J Med 101:395–400

    Article  CAS  PubMed  Google Scholar 

  • Lashuel HA, Lai Z, Kelly JW (1998) Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implication for wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 37:17851–17864

    Article  CAS  PubMed  Google Scholar 

  • Mansoor MA, Svardal AM, Ueland PM (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, and glutathione in human plasma. Anal Biochem 200:218–229

    Article  CAS  PubMed  Google Scholar 

  • Marzouk SAM, Buck RP, Dunlap LA, Johnson TA, Cascio WE (2002) Measurement of extracellular pH, K +, and lactate in ischemic heart. Anal Biochem 308:52–60

    Article  CAS  PubMed  Google Scholar 

  • Mills BJ, Weiss MM, Lang CA, Liu MC, Ziegler C (2000) Blood glutathion and cysteine changes in cardiovascular disease. J Lab Clin Med 135:396–401

    Article  CAS  PubMed  Google Scholar 

  • Monaco HL, Rizzi M, Coda A (1995) Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268:1039–1041

    Article  CAS  PubMed  Google Scholar 

  • Moriarty-Craige SE, Adkinson J, Lynn M, Gensler G, Bressler S, Jones DP, Sternberg P (2005) Antioxidant supplements prevent oxidation of cysteine/cystine redox in patients with age-related macular degeneration. Am J Ophthalmol 140:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Nepomuceno AI, Mason CJ, Muddiman DC, Bergen III HR, Zeldenrust SR (2004) Detection of genetic variants of transthyretin by liquid chromatography-dual electrospray ionization Fourier-transform ion-cyclotron-resonance mass spectrometry. Clin Chem 50:1535–1543

    Article  CAS  PubMed  Google Scholar 

  • Nolin TD, McMenamin ME, Himmelfarb J (2007) Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography: application to studies of oxidative stress. J Chromatogr B 852:554–561

    Article  CAS  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potential anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    Article  CAS  PubMed  Google Scholar 

  • Planté-Bordeneuve V, Carayol J, Ferreira A, Adams D, Clerget-Darpoux F, Misrahi M, Said G, Bonaïti-Pellié C (2003) Genetic study of transthyretin amyloid neuropathies: carrier risk among French and Portuguese families. J Med Genet 40(11):e120

    Article  PubMed  Google Scholar 

  • Richardson SJ (2007) Cell and molecular biology of transthyretin and thyroid hormones. Int Rev Cytol 258:137–193

    Article  CAS  PubMed  Google Scholar 

  • Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PSSR (1998) Influence of Piperine on the pharmacokinetics of Curcumin in animals and human volunteers. Planta Medica 64: 353–356

    Article  CAS  PubMed  Google Scholar 

  • Street D, Bangsbo J, Juel C (2001) Interstitial pH in human muscle during and after dynamic graded exercise. J Physiol 537:993–998

    Article  CAS  PubMed  Google Scholar 

  • Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    CAS  PubMed  Google Scholar 

  • Théberge R, Connors L, Skinner M, Skare J, Costello CE (1999) Characterization of transthyretin mutants from serum using immunoprecipitation, HPLC/ electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 71:452–459

    Article  PubMed  Google Scholar 

  • Trevani AS, Andonegui G, Giordano M, López DH, Gamberale R, Minucci F, Geffner JR (1999) Extracellular acidifcation induces human neutrophil activation. J Immunol 162:4849–4857

    CAS  PubMed  Google Scholar 

  • Westermark P, Berström J, Solomon A, Murphy C, Sletten K (2003) Thransthyretin-derived senile systemic amyloidosis: clinicopathological and structural considerations. Amyloid: J Protein Folding Disord 10 (Suppl 1):48–54

    CAS  Google Scholar 

  • Westermark P, Sletten K, Johansson B, Cornwell GG (1990) Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc Natl Acad Sci USA 87:2843–2845

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen P, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Zhang O, Kelly JW (2003) Cys-10 mixed disulfides make transthyretin more amyloidogenic under mildly acidic conditions. Biochemistry 42:8756–8761

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We appreciate the technical assistance of Pia Winter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Altland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altland, K., Richardson, S.J. (2009). Histidine 31: The Achilles' Heel of Human Transthyretin. Microheterogeneity is Not Enough to Understand the Molecular Causes of Amyloidogenicity. In: Richardson, S.J., Cody, V. (eds) Recent Advances in Transthyretin Evolution, Structure and Biological Functions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00646-3_13

Download citation

Publish with us

Policies and ethics