Skip to main content

Principles of Neural Spatial Interaction Modeling

  • Chapter
  • First Online:
Tool Kits in Regional Science

Part of the book series: Advances in Spatial Science ((ADVSPATIAL))

  • 799 Accesses

Abstract

This chapter is intended as a convenient resource for regional scientists interested in a statistical view of the neural spatial interaction modelling approach. We view neural spatial interaction models as an example of non-parametric estimation that makes few, if any, a priori assumptions about the nature of the data-generating process to approximate the true, but unknown spatial interaction function of interest. We limit the scope of this chapter to unconstrained spatial interaction and use appropriate statistical arguments to gain important insights into the problems and properties of this modelling approach that may be useful for those interested in application development. The remainder of this chapter is structured as follows. The next section introduces the class of neural spatial interaction models of interest, and sets forth the context in which spatial interaction modelling will be considered. The sections that follow present important components of a methodology for neural spatial interaction modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batten, D. F., & . Boyce, D. E (1986). Spatial interaction, transportation, and interregional commodity flow models. In P. Nijkamp (Ed.), Handbook of regional and urban economics, Volume I, Amsterdam, North-Holland, pp. 357–406.

    Google Scholar 

  • Bergkvist, E. (2000). Forecasting interregional freight flows by gravity models. Jahrbuch für Regionalwissenschaft, 20, 133–148.

    Google Scholar 

  • Bishop, M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Carrothers, G. A. P. (1956). An historical review of the gravity and potential concepts of human interaction. Journal of the American Institute of Planners, 22, 94–102.

    Google Scholar 

  • Chen, A. M. Lu, H. M. & Hecht-Nielsen, R. (1993). On the geometry of feedforward neural-network error surfaces. Neural Computation, 5, 910–926.

    Article  Google Scholar 

  • Cichocki, A. & Unbehauen, R. (1993). Neural networks for optimization and signal processing. Chichester: Wiley.

    Google Scholar 

  • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals and Systems, 2, 303–314.

    Article  Google Scholar 

  • Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Fischer, M. M. (2002a). Learning in neural spatial interaction models: A statistical perspective. Journal of Geographical Systems, 43, 287–299.

    Article  Google Scholar 

  • Fischer, M. M. (2002b). A novel modular product unit neural network for modelling constrained spatial interaction flows. Proceedings of the IEEE 2002 world congress on computational intelligence: 2002 congress on evolutionary computation pp. 1215–1220. Piscataway NJ, IEEE Press.

    Google Scholar 

  • Fischer, M. M. (2001). Neural spatial interaction models. In M. M. Fischer and Y. Leung (Eds.), Geocomputational modelling: Techniques and applications. Heidelberg, Springer, pp. 195–219.

    Google Scholar 

  • Fischer, M. M. (2000). Methodological challenges in neural spatial interaction modelling: The issue of model selection. In A. Reggiani (Ed.), Spatial economic science: New frontiers in theory and methodology. Heidelberg, Springer, pp. 89–101.

    Google Scholar 

  • Fischer, M. M. & Getis, A. (1999). New advances in spatial interaction theory, Papers in Regional Science, 78, 117–118.

    Article  Google Scholar 

  • Fischer, M. M. & Gopal, S. (1994). Artificial neural networks: A new approach to modelling interregional telecommunication flows. Journal of Regional Science, 344, 503–527.

    Article  Google Scholar 

  • Fischer, M. M. & Leung, Y. (1998). A genetic-algorithm based evolutionary computational neural network for modelling spatial interaction data. The Annals of Regional Science, 323, 437–458.

    Article  Google Scholar 

  • Fischer, M. M. & Reismann, M. (2002a). Evaluating neural spatial interaction modelling by bootstrapping. Networks and Spatial Economics, 23, 255–268.

    Google Scholar 

  • Fischer, M. M. & Reismann, M. (2002b). A methodology for neural spatial interaction modeling. Geographical Analysis, 342, 207–228.

    Article  Google Scholar 

  • Fischer, M. M. Reismann, M. & Hlavackova-Schindler, K. (2003). Neural network modelling of constrained spatial interaction flows: Design, estimation and performance issues. Journal of Regional Science, 431, 35–61.

    Article  Google Scholar 

  • Fischer, M. M. Hlavackova-Schindler, K. & Reismann, M. (1999). A global search procedure for parameter estimation in neural spatial interaction modelling. Papers in Regional Science, 78, 119–134.

    Article  Google Scholar 

  • Fotheringham, A. S. & O'Kelly, M. E. (1989). Spatial interaction models: Formulations and applications. Dordrecht: Kluwer.

    Google Scholar 

  • Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks, Neural Networks. 2, 183–192.

    Article  Google Scholar 

  • Hassoun, M. H. (1995). Fundamentals of artificial neural networks. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hecht-Nielsen, R. (1989). Theory of the back-propagation neural network. Proceedings of the international joint conference on neural networks. Washington, D.C. IEEE. pp. 593–606.

    Google Scholar 

  • Hornik, K. Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–368.

    Article  Google Scholar 

  • Isard, W. & Bramhall, D. F. (1960). Gravity, potential, and spatial interaction models. In W. Isard (ed.), Methods of regional analysis. Cambridge, MA: MIT Press, pp. 493–568.

    Google Scholar 

  • Mozolin, M. Thill, J.-C., & Usery, E. L. (2000). Trip distribution forecasting with multilayer perceptron neural networks: A critical evaluation. Transportation Research B, 34, 53–73.

    Article  Google Scholar 

  • Olsson, G. (1965). Distance and human interaction. Philadelphia, PA: Regional Science Research Institute.

    Google Scholar 

  • Openshaw, S. (1988). Building an automated modelling system to explore a universe of spatial interaction models. Geographical Analysis, 201, 31–46.

    Google Scholar 

  • Paass, G. (1993). Assessing and improving neural network predictions by the bootstrap algorithm. In S. J. Hanson, J. D. Cowan & C. L. Giles (Eds.), Advances in neural information processing systems. San Mateo, CA: Morgan Kaufmann, pp. 196–203.

    Google Scholar 

  • Press, W. H. Teukolsky, S. A. Vetterling, W. T. & Flannery, B. P. (1992). Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reggiani, A. & Tritapepe, T. (2000). Neural networks and logit models applied to commuters' mobility in the metropolitan area of Milan. In V. Himanen, P. Nijkamp & A. Reggiani, (Eds.), Neural networks in transport applications. Aldershot: Ashgate pp. 111–129.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart, J. L. McClelland & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press, pp. 318–362.

    Google Scholar 

  • Sen, A. & Smith, T. E. (1995). Gravity models of spatial interaction behavior. Heidelberg: Springer.

    Google Scholar 

  • Sussmann, H. J., (1992). Uniqueness of the weights for minimal feedforward nets with a given input-output map. Neural Networks, 5, 589–593.

    Article  Google Scholar 

  • Turton, I. Openshaw, S. & Diplock, G. (1997). A genetic programming approach to building new spatial models relevant to GIS. In Z Kemp (Ed.), Innovations in GIS 4. London: Taylor & Francis, pp. 89–104.

    Google Scholar 

  • White, H. (1989a). Learning in artificial neural networks: A statistical perspective. Neural Computation, 1, 425–464.

    Article  Google Scholar 

  • White, H. (1989b). Some asymptotic results for learning in single hidden layer feedforward network models. Journal of the American Statistical Association, 84, 1008–1013.

    Article  Google Scholar 

  • White, H. & Racine, J. (2001). Statistical inference, the bootstrap, and neural-network modeling with application to foreign exchange rates. IEEE Transactions on Neural Networks, 124, 657–673.

    Article  Google Scholar 

  • Wilson, A. G. (1970). Entropy in urban and regional planning. London: Pion.

    Google Scholar 

  • Wilson, A. G. (1967). A statistical theory of spatial distribution models. Transportation Research, 1, 253–269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred M. Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, M.M. (2009). Principles of Neural Spatial Interaction Modeling. In: Sonis, M., Hewings, G. (eds) Tool Kits in Regional Science. Advances in Spatial Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00627-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00627-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00626-5

  • Online ISBN: 978-3-642-00627-2

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics