Skip to main content

Morphological Computation – Connecting Brain, Body, and Environment

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5436))

Abstract

Traditionally, in robotics, artificial intelligence, and neuroscience, there has been a focus on the study of the control or the neural system itself. Recently there has been an increasing interest in the notion of embodiment not only in robotics and artificial intelligence, but also in neuroscience, psychology, and philosophy. In this paper, we introduce the notion of morphological computation and demonstrate how it can be exploited on the one hand for designing intelligent, adaptive robotic systems, and on the other for understanding natural systems. While embodiment has often been used in its trivial meaning, i.e. “intelligence requires a body”, the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. Morphological computation is about connecting body, brain and environment. A number of case studies are presented to illustrate the concept. We conclude with some speculations about potential lessons for neuroscience and robotics, in particular for building brain-like intelligence, and we present a theoretical scheme that can be used to embed the diverse case studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  2. Pfeifer, R., Bongard, J.: How the body shapes the way we think. MIT Press, Cambridge (2007)

    Google Scholar 

  3. Markram, H.: The blue brain project. Nature Reviews — Neuroscience 7, 153–159 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. Lungarella, M.: Exploring principles towards a developmental theory of embodied artificial intelligence. Ph.D. dissertation, University of Zurich, Switzerland (2004)

    Google Scholar 

  5. Lungarella, M., Pegors, T., Bulwinkle, D., Sporns, O.: Methods for quantifying the information structure of sensory and motor data. Neuroinformatics 3(3), 243–262 (2005)

    Article  PubMed  Google Scholar 

  6. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Lichtensteiger, L.: On the interdependence of morphology and control for intelligent behavior. Ph.D. dissertation, University of Zurich (2004)

    Google Scholar 

  8. Pfeifer, R.: On the role of morphology and materials in adaptive behavior. In: Sixth International Conference on Simulation of Adaptive Behavior (SAB), pp. 23–32 (2000)

    Google Scholar 

  9. Pfeifer, R.: Morpho-functional machines: basics and research issues. In: Morpho-functional machines: the new species. Springer, Tokyo (2003)

    Google Scholar 

  10. Franceschini, N., Pichon, J.M., Blanes, C.: From insect vision to robot vision. Philos. Trans. R. Soc. London B. 337, 283–294 (1992)

    Article  Google Scholar 

  11. Hoshino, K., Mura, F., Shimoyama, I.: Design and performance of a micro-sized biomorphic compound eye with a scanning retina. Journal of Microelectromechanical Systems 9, 32–37 (2000)

    Article  CAS  Google Scholar 

  12. Yokoi, H., Arieta, A.H., Katoh, R., Yu, W., Watanabe, I., Maruishi, M.: Mutual adaptation in a prosthetics application. In: [47], pp. 147–159 (2004)

    Google Scholar 

  13. Molina-Vilaplana, J., Feliu-Batlle, J., López-Coronado, J.: A modular neural network architecture for step-wise learning of grasping tasks. Neural Networks 20(5), 631–645 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. Takamuku, S., Gómez, G., Hosoda, K., Pfeifer, R.: Haptic discrimination of material properties by a robotic hand. In: 6th IEEE International Conference on Development and Learning, ICDL (in press, 2007) (accepted for publication)

    Google Scholar 

  15. Gómez, G., Hernandez, A., Eggenberger Hotz, P.: An adaptive neural controller for a tendon driven robotic hand. In: Arai, T., Pfeifer, R., Balch, T., Yokoi, H. (eds.) Proceedings of the 9th International Conference on Intelligent Autonomous Systems (IAS-9), Tokyo, Japan, pp. 298–307. IOS Press, Amsterdam (2006)

    Google Scholar 

  16. Gómez, G., Hotz, P.E.: Evolutionary synthesis of grasping through self-exploratory movements of a robotic hand. In: IEEE Congress on Evolutionary Computation (CEC 2007) (2007)

    Google Scholar 

  17. Borst, C., Fischer, M., Hirzinger, G.: Calculating hand configurations for precision and pinch grasps. In: IEEE/RSJ Int. Conference on Intelligent robots and Systems (IROS 2002), vol. 2, pp. 1553–1559 (2002)

    Google Scholar 

  18. Yu, W., Yokoi, H., Kakazu, Y.: Focus on Robotics Research. In: Liu, J.X. (ed.) An Interaction Based Learning Method for Assistive Device Systems, pp. 123–159. Nova Publishers (2006)

    Google Scholar 

  19. Hernandez, A., Katoh, R., Yokoi, H., Yu, W.: Development of a multi-dofelectromyography prosthetic system using the adaptive joint mechanism. Applied Bionics and Biomechanics 3(2), 101–112 (2006)

    Article  Google Scholar 

  20. Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks. PLoS Comp. Biol. 2, e144 (2006)

    Article  Google Scholar 

  21. http://a1989.g.akamai.net/f/1989/7101/1d/www3.festo.com/_C1256D56002E7B89.nsf/html/Aqua_ray_en.pdf/FILE/Aqua_ray_en.pdf

  22. http://www.eurekamagazine.co.uk/article/9658/Novel-actuators-copy-structures-from-fish.aspx

  23. Staudacher, E.: Distribution and morphology of descending brain neurons in the cricket gryllus bimaculatus. Cell Tisues Res. 294, 187–202 (1998)

    Article  CAS  Google Scholar 

  24. Watson, J., Ritzmann, R.: Leg kinematics and muscle activity during treadmill running in the cockroach, blaberus discoidalis: I. slow running. J. Comp. Physiol. A 182, 11–22 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Watson, J., Ritzmann, R., Pollack, A.: Control of climbing behavior in the cockroach, blaberus discoidalis. ii. motor activities associated with joint movement. J. Comp. Physiol. A 188, 55–69 (2002)

    Article  Google Scholar 

  26. McGeer, T.: Passive dynamic walking. The International Journal of Robotics Research 9(2), 62–82 (1990)

    Article  Google Scholar 

  27. McGeer, T.: Passive walking with knees. In: IEEE Conference on Robotics and Automation, vol. 2, pp. 1640–1645 (1990)

    Google Scholar 

  28. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive dynamic walkers. Science 307, 1082–1085 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Wisse, M.: Three additions to passive dynamic walking: actuation, an upper body, and 3d stability. International Journal of Humanoid Robotics 2(4), 459–478 (2005)

    Article  Google Scholar 

  30. Takuma, T., Hosoda, H.: Controlling the walking period of a pneumatic muscle walker. The International Journal of Robotics Research 25(9), 861–866 (2006)

    Article  Google Scholar 

  31. Paul, C., R., Dravid, F.: Control of lateral bounding for a pendulum driven hopping robot. In: International Conference of Climbing and Walking Robots, Paris, France. (2002)

    Google Scholar 

  32. Paul, C., R., Dravid, F.: Design and control of a pendulum driven hopping robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2002, Lausanne, Switzerland (2002)

    Google Scholar 

  33. Iida, F., Pfeifer, R.: “cheap” rapid locomotion of a quadruped robot: Self-stabilization of bounding gait. In: Groen, F., Amato, N., Bonarini, A., Yoshida, E., Krse, B. (eds.) Proc. of the 8th Int. Conf. on Intelligent Autonomous Systems (IAS-8), pp. 642–649. IOS Press, Amsterdam (2004)

    Google Scholar 

  34. Iida, F., Pfeifer, R.: Sensing through body dynamics. Robotics and Autonomous Systems 54 (8), 631–640 (2006)

    Article  Google Scholar 

  35. Kubow, T.M., Full, R.J.: The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Philosophical Transactions of the Royal Society B. 354, 849–861 (1999)

    Article  Google Scholar 

  36. Blickhan, R., Wagner, H., Seyfarth, A.: Brain or muscles? Rec. Res. Devel. Biomechanics 1, 215–245 (2003)

    Google Scholar 

  37. Iida, F.: Cheap design and behavioral diversity for autonomous adaptive robots. Ph.D. dissertation, Faculty of Mathematics and Science, University of Zurich, Switzerland (2005)

    Google Scholar 

  38. Buehler, M.: Dynamic locomotion with one, four and six-legged robots. J. of the Rob. Soc. of Japan 20(3), 15–20 (2002)

    Google Scholar 

  39. Schmitz, A., Gómez, G., Iida, F., Pfeifer, R.: Adaptive control of dynamic legged locomotion. In: Concept Learning Workshop, IEEE International Conference on Robotics and Automation (ICRA 2007) (2007)

    Google Scholar 

  40. Schmitz, A., Gómez, G., Iida, F., Pfeifer, R.: On the robustness of simple speed control for a quadruped robot. In: Proceedings of International Conference on Morphological Computation Workshop 2007, pp. 88–90 (2007)

    Google Scholar 

  41. Rinderknecht, M., Ruesch, J., Hadorn, M.: The lagging legs exploiting body dynamics to steer a quadrupedal agent. In: International Conference on Morphological Computation, Venice, Italy (2007)

    Google Scholar 

  42. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13, 15–21 (1990)

    Article  CAS  PubMed  Google Scholar 

  43. Cruse, H., Dean, J., Durr, V., Kindermann, T., Schmitz, J., Schumm, M.: A decentralized, biologically based network for autonomous control of (hexapod) walking. In: Neurothecnology for biomimetic robots, pp. 384–400. MIT Press, Cambridge (2002)

    Google Scholar 

  44. Dür, V., Krause, A.F., Schitz, J., Cruse, H.: Neuroethological concepts and their transfer to walking machines. International Journal of Robotics Research 22(3-4), 151–167 (2003)

    Article  Google Scholar 

  45. Ziegler, M., Iida, F., Pfeifer, R.: Cheap underwater locomotion: Morphological properties and behavioral diversity. In: IROS 2005 Workshop on Morphology, Control, and Passive Dynamics (2005)

    Google Scholar 

  46. Pfeifer, R., Iida, F., Gómez, G.: Morphological computation for adaptive behavior and cognition. International Congress Series 1291, 22–29 (2006)

    Article  Google Scholar 

  47. Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.): Embodied Artificial Intelligence. LNCS, vol. 3139, pp. 1–26. Springer, Heidelberg (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfeifer, R., Gómez, G. (2009). Morphological Computation – Connecting Brain, Body, and Environment. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds) Creating Brain-Like Intelligence. Lecture Notes in Computer Science(), vol 5436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00616-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00616-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00615-9

  • Online ISBN: 978-3-642-00616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics