Skip to main content

Stochastic Dynamics in the Brain and Probabilistic Decision-Making

  • Chapter
Creating Brain-Like Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5436))

Abstract

The stochastical spiking of neurons is a source of noise in the brain. We show that this noise is important in brain dynamics, by producing probabilistic settling into attractor states. This can account for probabilistic decision-making, which we show can be advantageous. Similar stochastical dynamics contributes to multistable states such as pattern rivalry and binocular rivalry. Stochastical dynamics also contributes to the detectability of signals in the brain that are close to threshold. Stochastical dynamics provides an interesting way to understand a number of important aspects of brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barto, A.G.: Learning by statistical cooperation of self-interested neuron-like computing elements, COINS Tech. Rep., University of Massachusetts, Department of Computer and Information Science, Amherst 85-11, 1– (1985)

    Google Scholar 

  2. Battaglia, F., Treves, A.: Stable and rapid recurrent processing in realistic autoassociative memories. Neural Computation 10, 431–450 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Blake, R., Logothetis, N.K.: Visual competition. Nature Reviews Neuroscience 3, 13–21 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Brunel, N., Wang, X.J.: Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience 11, 63–85 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Carpenter, R.H.S., Williams, M.: Neural computation of log likelihood in control of saccadic eye movements. Nature 377, 59–62 (1995)

    Article  CAS  PubMed  Google Scholar 

  6. Dawkins, M.S.: Unravelling Animal Behaviour, 2nd edn. Longman, Harlow (1995)

    Google Scholar 

  7. de Lafuente, V., Romo, R.: Neuronal correlates of subjective sensory experience. Nature Neuroscience 12, 1698–1703 (2005)

    Article  Google Scholar 

  8. Deco, G., Rolls, E.T.: Object-based visual neglect: a computational hypothesis. European Journal of Neuroscience 16, 1994–2000 (2002)

    Article  PubMed  Google Scholar 

  9. Deco, G., Rolls, E.T.: Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex. European Journal of Neuroscience 18, 2374–2390 (2003)

    Article  PubMed  Google Scholar 

  10. Deco, G., Rolls, E.T.: A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research 44, 621–644 (2004)

    Article  PubMed  Google Scholar 

  11. Deco, G., Rolls, E.T.: Attention, short term memory, and action selection: a unifying theory. Progress in Neurobiology 76, 236–256 (2005a)

    Article  PubMed  Google Scholar 

  12. Deco, G., Rolls, E.T.: Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. Journal of Neurophysiology 94, 295–313 (2005b)

    Article  CAS  PubMed  Google Scholar 

  13. Deco, G., Rolls, E.T.: Sequential memory: a putative neural and synaptic dynamical mechanism. Journal of Cognitive Neuroscience 17, 294–307 (2005c)

    Article  PubMed  Google Scholar 

  14. Deco, G., Rolls, E.T.: Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. Cerebral Cortex 15, 15–30 (2005d)

    Article  PubMed  Google Scholar 

  15. Deco, G., Rolls, E.T.: A neurophysiological model of decision-making and Weber’s law. European Journal of Neuroscience 24, 901–916 (2006)

    Article  PubMed  Google Scholar 

  16. Deco, G., Rolls, E.T., Horwitz, B.: ‘What’ and ‘where’ in visual working memory: a computational neurodynamical perspective for integrating fMRI and single-neuron data. Journal of Cognitive Neuroscience 16, 683–701 (2004)

    Article  PubMed  Google Scholar 

  17. Deco, G., Scarano, L., Soto-Faraco, S.: Weber’s law in decision-making: integrating behavioral data in humans with a neurophysiological model. Journal of Neuroscience 27, 11192–11200 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Franco, L., Rolls, E.T., Aggelopoulos, N.C., Jerez, J.M.: Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biological Cybernetics 96, 547–560 (2007)

    Article  PubMed  Google Scholar 

  19. Glimcher, P.: The neurobiology of visual-saccadic decision making. Annual Reviews of Neuroscience 26, 133–179 (2003)

    Article  CAS  Google Scholar 

  20. Green, D., Swets, J.: Signal Detection Theory and Psychophysics. Wiley, New York (1966)

    Google Scholar 

  21. Hernandez, A., Zainos, A., Romo, R.: Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33, 959–972 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA 79, 2554–2558 (1982)

    Article  CAS  Google Scholar 

  23. Horne, J.: Sleepfaring: a journey through the science of sleep. Oxford University Press, Oxford (2006)

    Google Scholar 

  24. Kacelnik, A., Brito e Abreu, F.: Risky choice and Weber’s Law. Journal of Theoretical Biology 194, 289–298 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Kandel, E.R., Schwartz, J.H., Jessel, T.H. (eds.): Principles of Neural Science, 4th edn. Elsevier, Amsterdam (2000)

    Google Scholar 

  26. Krebs, J.R., Davies, N.B.: Behavioural Ecology, 3rd edn. Blackwell, Oxford (1991)

    Google Scholar 

  27. Loh, M., Rolls, E.T., Deco, G.: A dynamical systems hypothesis of schizophrenia. PLoS Computational Biology (2007)

    Google Scholar 

  28. Maier, A., Logothetis, N.K., Leopold, D.A.: Global competition dictates local suppression in pattern rivalry. Journal of Vision 5, 668–677 (2005)

    Article  PubMed  Google Scholar 

  29. Mattia, M., Del Giudice, P.: Population dynamics of interacting spiking neurons. Physical Review E 66, 051917 (2002)

    Article  Google Scholar 

  30. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  31. Maynard Smith, J.: Game theory and the evolution of behaviour. Behavioral and Brain Sciences 7, 95–125 (1984)

    Article  Google Scholar 

  32. Paenke, I., Sendhoff, B., Kawecki, T.: Influence of plasticity and learning on evolution under directional selection. American Naturalist 170 (2), 1–12 (2007)

    Article  Google Scholar 

  33. Panzeri, S., Rolls, E.T., Battaglia, F., Lavis, R.: Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons. Network: Computation in Neural Systems 12, 423–440 (2001)

    Article  CAS  Google Scholar 

  34. Ratcliff, R., Zandt, T.V., McKoon, G.: Connectionist and diffusion models of reaction time. Psychological Reviews 106, 261–300 (1999)

    Article  CAS  Google Scholar 

  35. Rolls, E.T.: Emotion Explained. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  36. Rolls, E.T.: A computational neuroscience approach to consciousness. Neural Networks (2008a) (in press)

    Google Scholar 

  37. Rolls, E.T.: Memory, Attention, and Decision-Making. A Unifying Computational Neuroscience Approach. Oxford University Press, Oxford (2008b)

    Google Scholar 

  38. Rolls, E.T., Deco, G.: Computational Neuroscience of Vision. Oxford University Press, Oxford (2002)

    Google Scholar 

  39. Rolls, E.T., Treves, A.: Neural Networks and Brain Function. Oxford University Press, Oxford (1998)

    Google Scholar 

  40. Rolls, E.T., McCabe, C., Redoute, J.: Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task. Cerebral Cortex (2007) doi 10.1093/cercor/bhm097

    Google Scholar 

  41. Romo, R., Salinas, E.: Touch and go: decision-making mechanisms in somatosensation. Annual Review of Neuroscience 24, 107–137 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. Romo, R., Salinas, E.: Flutter discrimination: neural codes, perception, memory and decision making. Nature Reviews Neuroscience 4, 203–218 (2003)

    Article  CAS  PubMed  Google Scholar 

  43. Romo, R., Hernandez, A., Zainos, A., Lemus, L., Brody, C.D.: Neural correlates of decision-making in secondary somatosensory cortex. Nature Neuroscience 5, 1217–1225 (2002)

    Article  CAS  PubMed  Google Scholar 

  44. Romo, R., Hernandez, A., Zainos, A., Salinas, E.: Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38, 649–657 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. Romo, R., Hernandez, A., Zainos, A.: Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41, 165–173 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. Sigala, N., Logothetis, N.K.: Visual categorisation shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320 (2002)

    Article  CAS  PubMed  Google Scholar 

  47. Sugrue, L.P., Corrado, G.S., Newsome, W.T.: Choosing the greater of two goods: neural currencies for valuation and decision making. Nature Reviews Neuroscience 6, 363–375 (2005)

    Article  CAS  PubMed  Google Scholar 

  48. Sutton, R.S., Barto, A.G.: Towards a modern theory of adaptive networks: expectation and prediction. Psychological Review 88, 135–170 (1981)

    Article  CAS  PubMed  Google Scholar 

  49. Szabo, M., Almeida, R., Deco, G., Stetter, M.: Cooperation and biased competition model can explain attentional filtering in the prefrontal cortex. European Journal of Neuroscience 19, 1969–1977 (2004)

    Article  PubMed  Google Scholar 

  50. Szabo, M., Deco, G., Fusi, S., Del Giudice, P., Mattia, M., Stetter, M.: Learning to attend: Modeling the shaping of selectivity in infero-temporal cortex in a categorization task. Biological Cybernetics 94, 351–365 (2006)

    Article  PubMed  Google Scholar 

  51. Treves, A.: Mean-field analysis of neuronal spike dynamics. Network 4, 259–284 (1993)

    Article  Google Scholar 

  52. Usher, M., McClelland, J.: On the time course of perceptual choice: the leaky competing accumulator model. Psychological Reviews 108, 550–592 (2001)

    Article  CAS  Google Scholar 

  53. Wang, X.J.: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. Journal of Neuroscience 19, 9587–9603 (1999)

    CAS  PubMed  Google Scholar 

  54. Wang, X.J.: Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002)

    Article  CAS  PubMed  Google Scholar 

  55. Welford, A.T. (ed.): Reaction Times. Academic Press, London (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deco, G., Rolls, E.T. (2009). Stochastic Dynamics in the Brain and Probabilistic Decision-Making. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds) Creating Brain-Like Intelligence. Lecture Notes in Computer Science(), vol 5436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00616-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00616-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00615-9

  • Online ISBN: 978-3-642-00616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics