Skip to main content

Some Requirements for Human-Like Robots: Why the Recent Over-Emphasis on Embodiment Has Held Up Progress

  • Chapter
Creating Brain-Like Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5436))

Abstract

Some issues concerning requirements for architectures, mechanisms, ontologies and forms of representation in intelligent human-like or animal-like robots are discussed. The tautology that a robot that acts and perceives in the world must be embodied is often combined with false premises, such as the premiss that a particular type of body is a requirement for intelligence, or for human intelligence, or the premiss that all cognition is concerned with sensorimotor interactions, or the premiss that all cognition is implemented in dynamical systems closely coupled with sensors and effectors. It is time to step back and ask what robotic research in the past decade has been ignoring. I shall try to identify some major research gaps by a combination of assembling requirements that have been largely ignored and design ideas that have not been investigated – partly because at present it is too difficult to make significant progress on those problems with physical robots, as too many different problems need to be solved simultaneously. In particular, the importance of studying some abstract features of the environment about which the animal or robot has to learn (extending ideas of J.J.Gibson) has not been widely appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambler, A.P., Barrow, H.G., Brown, C.M., Burstall, R.M., Popplestone, R.J.: A Versatile Computer-Controlled Assembly System. In: Proc. Third Int. Joint Conf. on AI, Stanford, California, pp. 298–307 (1973)

    Google Scholar 

  2. Berthoz, A.: The Brain’s sense of movement. Perspectives in Cognitive Science. Harvard University Press, London (2000)

    Google Scholar 

  3. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. The MIT Press, Cambridge (1984)

    Google Scholar 

  4. Brooks, R.A.: Elephants Don’t Play Chess. Robotics and Autonomous Systems 6, 3–15 (1990), http://people.csail.mit.edu/brooks/papers/elephants.pdf

    Article  Google Scholar 

  5. Chappell, J., Sloman, A.: Natural and artificial meta-configured altricial information-processing systems. International Journal of Unconventional Computing 3(3), 211–239 (2007), http://www.cs.bham.ac.uk/research/projects/cosy/papers/#tr0609

    Google Scholar 

  6. Cliff, D.: Biologically-Inspired Computing Approaches to Cognitive Systems: a partial tour of the literature. Technical Report HPL-2003-11, Hewlett-Packard Labs, Bristol, UK (2003), http://www.hpl.hp.com/techreports/2003/HPL-2003-11.html

  7. Cutkosky, M.R., Jourdain, J.M., Wright, P.K.: Testing and Control of a Compliant Wrist. Technical Report CMU-RI-TR-84-04, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (March 1984), http://www.ri.cmu.edu/pubs/pub_73.html

  8. Gibson, E.J., Pick, A.D.: An Ecological Approach to Perceptual Learning and Development. Oxford University Press, New York (2000)

    Google Scholar 

  9. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)

    Google Scholar 

  10. Grush, R.: The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences 27, 377–442 (2004)

    PubMed  Google Scholar 

  11. Harnad, S.: The Symbol Grounding Problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  12. Jablonka, E., Lamb, M.J.: Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. MIT Press, Cambridge (2005)

    Google Scholar 

  13. Kant, I.: Critique of Pure Reason. Macmillan, Basingstoke (1871); Translated by Norman Kemp Smith (1929)

    Google Scholar 

  14. King, R.D., Clark, D.A., Shirazi, J., Sternberg, M.J.: Inductive logic programming used to discover topological constraints in protein structures. In: Proc. International Conference on Intelligent Systems for Molecular Biology, pp. 219–226 (1994)

    Google Scholar 

  15. Kirsch, D.: Today the earwig, tomorrow man? Artificial Intellintelligence 47(1), 161–184 (1991), http://adrenaline.ucsd.edu/kirsh/articles/earwig/earwig-cleaned.html

    Article  Google Scholar 

  16. Lakatos, I.: Proofs and Refutations. Cambridge University Press, Cambridge (1976)

    Book  Google Scholar 

  17. Lakatos, I.: The methodology of scientific research programmes. In: Worrall, J., Currie, G. (eds.) Philosophical papers, vol. I. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  18. Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks. PLoS Computational Biolology 2(10:e144) (2006) 10.1371/journal.pcbi.0020144

    Google Scholar 

  19. McCarthy, J.: The Well Designed Child (1996), http://www-formal.stanford.edu/jmc/child1.html

  20. Minsky, M.L.: The Society of Mind. William Heinemann Ltd., London (1987)

    Google Scholar 

  21. Minsky, M.L.: The Emotion Machine. Pantheon, New York (2006)

    Google Scholar 

  22. Neisser, U.: Cognition and Reality. W. H. Freeman., San Francisco (1976)

    Google Scholar 

  23. Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  24. Pfeifer, R., Iida, F., Gomez, G.: Designing intelligent robots - on the implications of embodiment. Journal of Robotics Society of Japan 24(07), 9–16 (2006), http://www.robotcub.org/misc/review3/07_Pfeifer_Iida_Gomez_RSJ.pdf

    Article  Google Scholar 

  25. Philipona, D.L., O’Regan, J.K.: Color naming, unique hues, and hue cancellation predicted from singularities in reflection properties. Visual Neuroscience 23(3-4), 331–339 (2006)

    Article  PubMed  Google Scholar 

  26. Poincaré, H.: Science and hypothesis. W. Scott, London (1905), http://www.archive.org/details/scienceandhypoth00poinuoft

    Google Scholar 

  27. Rips, L.J., Bloomfield, A., Asmuth, J.: From Numerical Concepts to Concepts of Number. The Behavioral and Brain Sciences (in press)

    Google Scholar 

  28. Sauvy, J., Suavy, S.: The Child’s Discovery of Space: From hopscotch to mazes – an introduction to intuitive topology. Penguin Education, Harmondsworth (1974); Translated from the French by Pam Wells

    Google Scholar 

  29. Shanahan, M.P.: A cognitive architecture that combines internal simulation with a global workspace. Consciousness and Cognition 15, 157–176 (2006)

    Article  Google Scholar 

  30. Sloman, A.: ‘Necessary’, ‘A Priori’ and ‘Analytic’. Analysis 26(1), 12–16 (1965), http://www.cs.bham.ac.uk/research/projects/cogaff/07.html#701

    Article  Google Scholar 

  31. Sloman, A.: The Computer Revolution in Philosophy. Harvester Press (and Humanities Press), Hassocks (1978), http://www.cs.bham.ac.uk/research/cogaff/crp

    Google Scholar 

  32. Sloman, A.: Image interpretation: The way ahead?. In: Braddick, O.J., Sleigh, A.C. (eds.) Physical and Biological Processing of Images (Proceedings of an international symposium organised by The Rank Prize Funds, London, 1982), pp. 380–401. Springer, Berlin (1982), http://www.cs.bham.ac.uk/research/projects/cogaff/06.html#0604

    Google Scholar 

  33. Sloman, A.: What enables a machine to understand? In: Proc. 9th IJCAI, Los Angeles, pp. 995–1001 (1985)

    Google Scholar 

  34. Sloman, A.: On designing a visual system (towards a gibsonian computational model of vision). Journal of Experimental and Theoretical AI 1(4), 289–337 (1989), http://www.cs.bham.ac.uk/research/projects/cogaff/81-95.html#7

    Article  Google Scholar 

  35. Sloman, A.: Actual possibilities. In: Aiello, L.C., Shapiro, S.C. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Fifth International Conference (KR 1996), Boston, MA, pp. 627–638. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  36. Sloman, A.: The Cognition and Affect Project: Architectures, Architecture-Schemas, And The New Science of Mind. Technical report, School of Computer Science, University of Birmingham (2003) (revised, August 2008), http://www.cs.bham.ac.uk/research/projects/cogaff/03.html#200307

  37. Sloman, A.: Cross-Disciplinary Reflections: Philosophical Robotics. Research Note: Draft chapter for a book on the CoSy project COSY-TR-0806, School of Computer Science, University of Birmingham (2008), http://www.cs.bham.ac.uk/research/projects/cosy/papers/#tr0806

  38. Sloman, A.: Putting the Pieces Together Again. In: Sun, R. (ed.) Cambridge Handbook on Computational Psychology, ch. 26, pp. 684–709. Cambridge University Press, New York (2008), http://www.cs.bham.ac.uk/research/projects/cogaff/07.html#710

    Chapter  Google Scholar 

  39. Sloman, A., Chappell, J.: The Altricial-Precocial Spectrum for Robots. In: Proceedings IJCAI 2005, Edinburgh, pp. 1187–1192. IJCAI (2005), http://www.cs.bham.ac.uk/research/cogaff/05.html#200502

  40. Sloman, A.: Requirements for a Fully Deliberative Architecture (Or component of an architecture). Research Note COSY-DP-0604, School of Computer Science, University of Birmingham, Birmingham, UK (May 2006), http://www.cs.bham.ac.uk/research/projects/cosy/papers/#dp0604

  41. Sloman, A.: Diversity of Developmental Trajectories in Natural and Artificial Intelligence. In: Morrison, C.T., Oates, T.T. (eds.) Computational Approaches to Representation Change during Learning and Development. AAAI Fall Symposium 2007, Technical Report FS-07-03, pp. 70–79. AAAI Press, Menlo Park (2007), http://www.cs.bham.ac.uk/research/projects/cosy/papers/#tr0704

    Google Scholar 

  42. Sloman, A.: Architectural and representational requirements for seeing processes and affordances. In: Computational Modelling in Behavioural Neuroscience: Closing the gap between neurophysiology and behaviour. Psychology Press, London (2008), http://www.cs.bham.ac.uk/research/projects/cosy/papers#tr0801

    Google Scholar 

  43. Sloman, A.: Architectural and representational requirements for seeing processes, proto-affordances and affordances. Research paper COSY-TR-0801a, School of Computer Science, University of Birmingham, UK, Also presented at Dagstuhl workshop on Logic and Probability for Scene Interpretation (March 2008), http://www.cs.bham.ac.uk/research/projects/cosy/papers#tr0801a

  44. Sloman, A.: Kantian Philosophy of Mathematics and Young Robots. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS, vol. 5144, pp. 558–573. Springer, Heidelberg (2008), http://www.cs.bham.ac.uk/research/projects/cosy/papers#tr0802

    Chapter  Google Scholar 

  45. Sloman, A.: Varieties of Meta-cognition in Natural and Artificial Systems. In: Cox, M.T., Raja, A. (eds.) Workshop on Metareasoning, AAAI 2008 Conference, pp. 12–20. AAAI Press, Menlo Park (2008), http://www.cs.bham.ac.uk/research/projects/cosy/papers/#tr0803

    Google Scholar 

  46. Sloman, A., Chappell, J.: Computational Cognitive Epigenetics (Commentary on [12]). Behavioral and Brain Sciences 30(4), 375–376 (2007), http://www.cs.bham.ac.uk/research/projects/cosy/papers/#tr0703

    Article  Google Scholar 

  47. Sloman, A., Cosy-partners.: CoSy deliverable DR.2.1 Requirements study for representations. Technical Report COSY-TR-0507, The University of Birmingham, UK (2005), http://www.cs.bham.ac.uk/research/projects/cosy/papers/#tr0507

  48. Strawson, P.F.: Individuals: An essay in descriptive metaphysics. Methuen, London (1959)

    Book  Google Scholar 

  49. Sussman, G.J.: A computational model of skill acquisition. American Elsevier, Amsterdam (1975)

    Google Scholar 

  50. Tarsitano, M.: Route selection by a jumping spider (Portia labiata) during the locomotory phase of a detour. Animal Behaviour 72(6), 1437–1442 (2006), http://dx.doi.org/10.1016/j.anbehav.2006.05.007

    Article  Google Scholar 

  51. Trehub, A.: The Cognitive Brain. MIT Press, Cambridge (1991), http://www.people.umass.edu/trehub/

    Google Scholar 

  52. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950); reprinted in Feigenbaum, E.A., Feldman, J. (eds.): Computers and Thought, pp. 11–35. McGraw-Hill, New York (1963)

    Google Scholar 

  53. Warneken, F., Tomasello, M.: Altruistic helping in human infants and young chimpanzees. Science, 1301–1303, March 3 (2006) doi:10.1126/science.1121448

    Google Scholar 

  54. Ziemke, T.: Situated and Embodied Cognition. Cognitive Systems Research 3(3) (2002) (Editor’s introduction to special issue)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sloman, A. (2009). Some Requirements for Human-Like Robots: Why the Recent Over-Emphasis on Embodiment Has Held Up Progress. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds) Creating Brain-Like Intelligence. Lecture Notes in Computer Science(), vol 5436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00616-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00616-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00615-9

  • Online ISBN: 978-3-642-00616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics