Advertisement

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes

  • Christopher Broadbent
  • Luke Ong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5504)

Abstract

Higher-order recursion schemes are systems of rewrite rules on typed non-terminal symbols, which can be used to define infinite trees. The Global Modal Mu-Calculus Model Checking Problem takes as input such a recursion scheme together with a modal μ-calculus sentence and asks for a finite representation of the set of nodes in the tree generated by the scheme at which the sentence holds. Using a method that appeals to game semantics, we show that for an order-n recursion scheme, one can effectively construct a non-deterministic order-n collapsible pushdown automaton representing this set. The level of the automaton is strict in the sense that in general no non-deterministic order-(n − 1) automaton could do likewise (assuming the requisite hierarchy theorem). The question of determinisation is left open. As a corollary we can also construct an order-n collapsible pushdown automaton representing the constructible winning region of an order-n collapsible pushdown parity game.

Keywords

Recursion Scheme Model Checking Game Semantics Collapsible Pushdown Automaton Parity Game 

References

  1. 1.
    Bradfield, J., Stirling, C.P.: Modal logics and mu-calculi: an introduction. In: Handbook of Process Algebra, pp. 293–332. Elsevier, North-Holland (2001)Google Scholar
  2. 2.
    Cachat, T.: Uniform solution of parity games on prefix-recognizable graphs. In: Proc. VISS. ENTCS, vol. 68. Elsevier, Amsterdam (2002)Google Scholar
  3. 3.
    Carayol, A.: Regular sets of higher-order pushdown stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Carayol, A., Hague, M., Meyer, A., Ong, C.-H.L., Serre, O.: Winning regions of higher-order pushdown games. In: Proc. LICS, pp. 193–204. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  5. 5.
    Carayol, A., Slaats, M.: Positional strategies for higher-order pushdown parity games. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 217–228. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Damm, W.: The IO- and OI -hierarchy. Theoretical Computer Science 20, 95–207 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proc. FOCS, pp. 368–377. IEEE computer society, Los Alamitos (1991)Google Scholar
  8. 8.
    Engelfriet, J.: Iterated pushdown automata and complexity classes. In: Proc. STOC, pp. 365–373. ACM, New York (1983)Google Scholar
  9. 9.
    Frantani, S.: Automates à piles de piles...de piles. PhD thesis (2005)Google Scholar
  10. 10.
    Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown automata and recursion schemes. In: Proc. LICS. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  11. 11.
    Hyland, M., Ong, C.-H.L.: On full abstraction for PCF: I, II and III. Information and computation 163(2), 285–408 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, p. 290. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. In: IEEE Computer Society, IEEE Computer Society, Los Alamitos (2006); Journal version, users.comlab.ox.ac.uk/luke.ong/publications/ntrees.pdf Google Scholar
  15. 15.
    Piterman, N., Vardi, M.Y.: Global model-checking of infinite-state systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 387–400. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Serre, O.: Note on winning positions on pushdown games with ω-regular conditions. Information Processing Letters 85, 285–291 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Stirling, C.P.: Bisimulation, model checking and other games. In: Notes for the Mathfit instructional meeting on games and Computation (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christopher Broadbent
    • 1
  • Luke Ong
    • 1
  1. 1.Computing LaboratoryOxford UniversityUK

Personalised recommendations