Advertisement

Reactive Systems, Barbed Semantics, and the Mobile Ambients

  • Filippo Bonchi
  • Fabio Gadducci
  • Giacoma Valentina Monreale
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5504)

Abstract

Reactive systems, proposed by Leifer and Milner, represent a meta-framework aimed at deriving behavioral congruences for those specification formalisms whose operational semantics is provided by rewriting rules. Despite its applicability, reactive systems suffered so far from two main drawbacks. First of all, no technique was found for recovering a set of inference rules, e.g. in the so-called SOS style, for describing the distilled observational semantics. Most importantly, the efforts focused on strong bisimilarity, tackling neither weak nor barbed semantics.

Our paper addresses both issues, instantiating them on a calculus whose semantics is still in a flux: Cardelli and Gordon’s mobile ambients.

While the solution to the first issue is tailored over our case study, we provide a general framework for recasting (weak) barbed equivalence in the reactive systems formalism. Moreover, we prove that our proposal captures the behavioural semantics for mobile ambients proposed by Rathke and Sobociński and by Merro and Zappa Nardelli.

Keywords

Reactive System Inference Rule Label Transition System Reduction Rule Weak Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: Logic in Computer Science, pp. 69–80. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  3. 3.
    Bonchi, F.: Abstract Semantics by Observable Contexts. PhD thesis, Department of Informatics, University of Pisa (2008)Google Scholar
  4. 4.
    Milner, R.: Bigraphs for petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Petri Nets and Graph Transformation. ENTCS, vol. 127, pp. 107–120. Elsevier, Amsterdam (2005)Google Scholar
  6. 6.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  7. 7.
    Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  8. 8.
    Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  9. 9.
    Cardelli, L., Gordon, A.: Mobile ambients. TCS 240(1), 177–213 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Labelled transitions for mobile ambients (as synthesized via a graphical encoding). In: Expressiveness in Concurrency. ENTCS. Elsevier, Amsterdam (forthcoming, 2008)Google Scholar
  11. 11.
    Rathke, J., Sobociński, P.: Deriving structural labelled transitions for mobile ambients. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 462–476. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. Journal of the ACM 52(6), 961–1023 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting with borrowed contexts. Mathematical Structures in Computer Science 16(6), 1133–1163 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Logic in Computer Science, pp. 311–320. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  15. 15.
    Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60-61, 17–139 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computation 204(1), 60–122 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bonchi, F., Gadducci, F., König, B.: Process bisimulation via a graphical encoding. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 168–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Milner, R.: Local bigraphs and confluence: Two conjectures. In: Expressiveness in Concurrency. ENTCS, vol. 175, pp. 65–73. Elsevier, Amsterdam (2007)Google Scholar
  19. 19.
    Di Gianantonio, P., Honsel, F., Lenisa, M.: RPO, second-order contexts, and λ-calculus. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 334–349. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Jensen, O., Milner, R.: Bigraphs and transitions. In: Principles of Programming Languages, pp. 38–49. ACM Press, New York (2003)Google Scholar
  21. 21.
    Grohmann, D., Miculan, M.: Reactive systems over directed bigraphs. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 380–394. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Fournet, C., Gonthier, G.: A hierarchy of equivalences for asynchronous calculi. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 844–855. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Honda, K., Yoshida, N.: On reduction-based process semantics. TCS 151(2), 437–486 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rathke, J., Sassone, V., Sobocinski, P.: Semantic barbs and biorthogonality. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 302–316. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Filippo Bonchi
    • 1
    • 2
  • Fabio Gadducci
    • 1
  • Giacoma Valentina Monreale
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaItaly
  2. 2.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands

Personalised recommendations