Advertisement

A Kleene Theorem for Polynomial Coalgebras

  • Marcello Bonsangue
  • Jan Rutten
  • Alexandra Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5504)

Abstract

For polynomial functors G, we show how to generalize the classical notion of regular expression to G-coalgebras. We introduce a language of expressions for describing elements of the final G-coalgebra and, analogously to Kleene’s theorem, we show the correspondence between expressions and finite G-coalgebras.

References

  1. 1.
    Aczel, P., Mendler, N.: A Final Coalgebra Theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  2. 2.
    Bonsangue, M., Rutten, J., Silva, A.: Regular expressions for polynomial coalgebras. CWI Technical report E0703 (2007)Google Scholar
  3. 3.
    Bonsangue, M., Rutten, J., Silva, A.: Coalgebraic logic and synthesis of mealy machines. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 231–245. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM 11(4), 481–494 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ésik, Z.: Axiomatizing the equational theory of regular tree languages (extended abstract). In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 455–465. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)zbMATHGoogle Scholar
  7. 7.
    Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. ITA 35(1), 31–59 (2001)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies, 3–42 (1956)Google Scholar
  9. 9.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. In: Logic in Computer Science, pp. 214–225 (1991)Google Scholar
  10. 10.
    Kozen, D.: Automata and Computability. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Technical Report, Computing and Information Science, Cornell University (March 2008), http://hdl.handle.net/1813/10173
  12. 12.
    Kurz, A.: Coalgebras and Their Logics. SIGACT News 37(2), 57–77 (2006)CrossRefGoogle Scholar
  13. 13.
    Rößiger, M.: Coalgebras and modal logic. ENTCS, 33 (2000)Google Scholar
  14. 14.
    Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rutten, J.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marcello Bonsangue
    • 1
    • 2
  • Jan Rutten
    • 2
    • 3
  • Alexandra Silva
    • 2
  1. 1.LIACS - Leiden UniversityThe Netherlands
  2. 2.Centrum voor Wiskunde en Informatica (CWI)The Netherlands
  3. 3.Vrije Universiteit Amsterdam (VUA)The Netherlands

Personalised recommendations