Skip to main content

Development of a Real-Time Full-Field Range Imaging System

  • Chapter
Recent Advances in Sensing Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 49))

Abstract

This article describes the development of a full-field range imaging system employing a high frequency amplitude modulated light source and image sensor. Depth images are produced at video frame rates in which each pixel in the image represents distance from the sensor to objects in the scene.

The various hardware subsystems are described as are the details about the firmware and software implementation for processing the images in real-time. The system is flexible in that precision can be traded off for decreased acquisition time. Results are reported to illustrate this versatility for both high-speed (reduced precision) and high-precision operating modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christie, S., et al.: Design and development of a multi-detecting two-dimensional ranging sensor. Measurement Science and Technology 6, 1301–1308 (1995)

    Article  Google Scholar 

  2. Kawahito, S., et al.: A CMOS Time-of-Flight range image sensor with Gates-on-Field-Oxide structure. IEEE Sensors 7, 1578–1586 (2007)

    Article  Google Scholar 

  3. Lange, R., Seitz, P.: Seeing distances – a fast time-of-flight 3D camera. Sensor Review 20, 212–217 (2000)

    Article  Google Scholar 

  4. Gulden, P., et al.: Novel opportunities for optical level gauging and 3-D imaging with the Photoelectronic Mixing Device. IEEE Transactions on Instrumentation and Measurement 51, 679–684 (2002)

    Article  Google Scholar 

  5. Buttgen, B., et al.: High-speed and high-sensitive demodulation pixel for 3D-imaging. In: Proc. SPIE – Three-dimensional image capture and applications, vol. 7 (2006)

    Google Scholar 

  6. Blais, F.: Review of 20 years of range sensor development. Journal of Electronic Imaging 13, 231–243 (2004)

    Article  Google Scholar 

  7. Besl, P.J.: Active, Optical range imaging sensors. Machine Vision and Applications 1, 127–152 (1988)

    Article  Google Scholar 

  8. Sato, K.: Range imaging based on moving pattern light and spatio-temporal matched filter. In: International Conference on Image Processing, vol. 1, pp. 33–36 (1996)

    Google Scholar 

  9. Dorrington, A.A., et al.: Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera. Measurement Science and Technology 18, 2809–2816 (2007)

    Article  Google Scholar 

  10. Jongenelen, A.P.P., et al.: Heterodyne range imaging in real-time. In: Proc. International Conference on Sensing Technology, Tainan, vol. 3, pp. 57–62 (2008)

    Google Scholar 

  11. O’Shea, P.: Phase Measurement. In: Webster, J.G. (ed.) Electrical Measurement, Signal Processing and Displays, pp. 28–41. CRC Press, Boca Raton (2003)

    Google Scholar 

  12. Lange, R., Seitz, P.: Solid-state time-of-flight range camera. IEEE Journal of Quantum Electronics 37, 390–397 (2001)

    Article  Google Scholar 

  13. Dorrington, A.A., et al.: Video-rate or high-precision: a flexible range imaging camera. In: Proc. SPIE Image Processing: Machine Vision Applications, vol. 6813 (2008)

    Google Scholar 

  14. DALSA, Pantera TF 1M60 and 1M30 User’s Manual and Reference (2004), http://www.dalsa.com

  15. PULNiX America Inc., Specifications of the Camera Link Interface Standard for Digital Cameras and Frame Grabbers (2000), http://www.imagelabs.com

  16. Payne, A.D., et al.: Image intensifier characterisation. In: Proc. Image and Vision Computing, New Zealand, pp. 487–492 (2006)

    Google Scholar 

  17. Payne, A.D., et al.: A synchronized Direct Digital Synthesiser. In: International Conference on Sensing Technology, Palmerston North, pp. 174–179 (2005)

    Google Scholar 

  18. Analog Devices, 400 MSPS 14-Bit, 1.8 V CMOS Direct Digital Synthesizer AD9952 Datasheet (2009), www.analog.com

  19. Altera Corporation, Stratix II Device Handbook, vol. 1 (2007), http://www.altera.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jongenelen, A.P.P., Payne, A.D., Carnegie, D.A., Dorrington, A.A., Cree, M.J. (2009). Development of a Real-Time Full-Field Range Imaging System. In: Mukhopadhyay, S.C., Gupta, G.S., Huang, R.YM. (eds) Recent Advances in Sensing Technology. Lecture Notes in Electrical Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00578-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00578-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00577-0

  • Online ISBN: 978-3-642-00578-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics