Skip to main content

VHDL-AMS Modelling of Ultrasound Measurement System in Linear Domain

  • Chapter
Recent Advances in Sensing Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 49))

  • 1267 Accesses

Abstract

Piezoelectric materials are commonly used in many applications. Different approaches were developped to predict the piezoelectric transducer behaviour. Among them, the resolution of piezoelectric equations by numerical methods is currently used. Another method is based on the equivalent electrical circuit simulation : Pspice or VHDL–AMS tools. This article proposes VHDL-AMS model for a pulse echo ultrasonic system. The simulation is based on the Redwood model and its parameters are deduced from the transducer acoustical characteristics. The electrical behaviour of the proposed model is in very good agreement with the real system behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mason, W.P.: Electromechanical transducers and wave filters, 2nd edn. Van Nostrand, New York (1942)

    Google Scholar 

  2. Kino, G.S.: Acoustic Waves. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  3. Redwood, M.: Transcient performance of a piezoelectric transducer. J. Acoust. Soc. Amer. 33, 527–536 (1961)

    Article  Google Scholar 

  4. Morris, S.A., Hutchens, C.G.: Implementation of Mason’s model on circuit analysis programs. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 33, 295–298 (1986)

    Article  Google Scholar 

  5. Krimholtz, R., Leedom, D.A., Matthei, G.L.: New equivalent circuits for elementary piezoelectric transducers. Electron. Lett. 6, 398–399 (1970)

    Article  Google Scholar 

  6. Leach Jr., W.M.: Controlled-source analogous circuits and SPICE models for piezoelectric transducers. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 41, 60–66 (1994)

    Article  Google Scholar 

  7. Püttmer, A., Hauptmann, P., Lucklum, R., Krause, O., Henning, B.: SPICE model for lossy piezoceramic transducers. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 44, 60–66 (1997)

    Article  Google Scholar 

  8. Maione, E., Tortoli, P., Lypacewicz, G., Nowicki, G., Reid, J.M., Fellow, L.: PSPICE modelling of ultrasound transducers: comparison of software models to experiment. IEEE Ultrason., Ferroelect., Freq. Contr. 46(2), 399–406 (1999)

    Article  Google Scholar 

  9. Hutchens, C.G., Morris, S.A.: A three port model for thickness mode transducers using SPICE II. In: IEEE Ultrasonics Symposium, pp. 897–902 (1984)

    Google Scholar 

  10. Deventer, J.V., Löfqvist, T., Delsing, J.: PSPICE simulation of ultrasonic systems. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47, 1014–1024 (2000)

    Article  Google Scholar 

  11. Ghorayeb, S.R., Maione, E., La Magna, V.: Modelling of ultrasonic wave propagation in teeth using PSPICE: a comparison with finite element models. IEEE Ultrason., Ferroelect., Freq. Contr. 48(4), 1124–1131 (2001)

    Article  Google Scholar 

  12. Safari, A., Koray Akdogan, E. (eds.): Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Heidelberg (2008)

    Google Scholar 

  13. Guelaz, R., Kourtiche, D., Hervé, Y., Nadi, M.: Ultrasonic piezoceramic transducer modeling with VDL-AMS IEEE 1076.1. In: Proc. IEEE Sensors, Vienna, Austria (2004)

    Google Scholar 

  14. Guelaz, R., Kourtiche, D., Nadi, M.: A behavioral description with VHDL-AMS of a piezo-ceramic ultrasound transducer based on the Redwood’s model. In: Proceedings FDL 2003: Forum on Specification and Design Languages, Frankfurt, German, pp. 32–43 (2003)

    Google Scholar 

  15. Sung, P.H., et al.: The Method for Integrating FBAR with Circuitry on CMOS Chip. In: IEEE International Frequency Control Symposium and Exposition, August 23-27, pp. 562–565 (2004)

    Google Scholar 

  16. Nikoozadeh, A., Wygant, I.O., Lin, D., Oralkan, Ö., Ergun, A.S., Stephens, D.N., Thomenius, K., EDentinger, A.M., Wildes, D., Akopyan, G., Shivkumar, K., Mahajan, A., Sahn, D.J., Khuri-Yakub, B.T.: Forward-looking intracardiac ultrasound imaging using a 1-D CMUT array integrated with custom front-end electronics. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 55, 2651–2660 (2008)

    Article  Google Scholar 

  17. Branin, F.: Transcient analysis of lossless transmission lines. Proceedings of IEEE 55, 2012–2013 (1967)

    Article  Google Scholar 

  18. IEEE Standard VHDL Analog and Mixed-Signal Extansions, IEEE Std 1076.1-1999, SH94731. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  19. Handbook of Chemistry and Physics, 45th edn. Chemical Rubber Co., Cleveland Ohio

    Google Scholar 

  20. http://www.matec.com/mindt/products/pc_cards/tb-1000/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kourtiche, D., Guelaz, R., Rouane, A., Nadi, M. (2009). VHDL-AMS Modelling of Ultrasound Measurement System in Linear Domain. In: Mukhopadhyay, S.C., Gupta, G.S., Huang, R.YM. (eds) Recent Advances in Sensing Technology. Lecture Notes in Electrical Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00578-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00578-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00577-0

  • Online ISBN: 978-3-642-00578-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics