Skip to main content

Electrical and Gas Sensing Perfomanance of Coppergermanate

  • Chapter
  • 1230 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 49))

Abstract

This study reports the preparation and gas-sensing performanance of thick film coppergermanate (CuGeO3) based gas sensor. The structural and microstructural properties of CuGeO3 material have been characterized using by various analytical practice. Thick films of the material were prepared by screen printing technique. The electrical resistance response of the sensor was investigated for different gases like H2S, LPG, CO, CO2, O2 and NH3 at different operating temperatures ranging from room temperature to 450oC. Selectivity and sensitivity of CuGeO3 is measured and reported. The material shows negative temperature coefficient. The synthesized sensor shows excellent electrical resistance response toward H2S gas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa, T., Kurachi, H., Shiokawa, J.: Physiochemical properties of rare earth pervoskite oxides used as gas sensor material. Journal of Material Science 20, 1207–1210 (1985)

    Article  Google Scholar 

  2. Moseley, P.T.: Materials selection for semiconductor gas sensors. Sensors and Actuators B 6, 149–156 (1992)

    Google Scholar 

  3. Noval, T.G., Yordanav, S.P.: Ceramic sensors- Technology and Application. Technomic Publishing Lancaster, PA (1996)

    Google Scholar 

  4. Rue, G.H., Ban, T.H., Choi, N.J., Kwak, J.H., Lim, Y.T., Lee, D.D.: Toxic gas response of (In,Sn)O2/Pt nanowire sensors. Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers 2(5-9), 1899–1902 (2005)

    Article  Google Scholar 

  5. Voorhoeve, R.J.H., Remeika, J.P., Freeland, P.E.: Rare-Earth Oxides of Manganese and Cobalt Rival Platinum for the Treatment of Carbon Monoxide in Auto Exhaust. Science 177(4046), 353–354 (1972)

    Article  Google Scholar 

  6. Gallagher, P.K., Jonson, D.W.: J. Amer. Ceram. Soc. 60, 128 (1977)

    Google Scholar 

  7. Kuwabara, M., Ide, T.: CO gas sensitivity in porous semiconducting barium titanate. Amre. Ceram. Soc. Bull. 66, 1401–1405 (1987)

    Google Scholar 

  8. Chiu, C.M., Chang, Y.H.: The structure, electrical and sensing properties for CO of the La0.8 Sr0.2CO 1-x NixO3 system. Mater. Sci. Eng., A 266, 93–98 (1999)

    Article  Google Scholar 

  9. Sorita, R., Kawano, T.: A highly selective CO sensor: Screening of electrode materials. Sensors and Actuators. B 35/36, 274–277 (1996)

    Article  Google Scholar 

  10. Inaba, T., Saji, K., Takahashi, H.: Limiting current-type gas sensor using high temperature -type conductor thin film. Electrochemistry 67, 458–462 (1999)

    Google Scholar 

  11. Kong, L.B., Sen, Y.S.: Gas sensing property and mechanism of CaxLa1-xFe2O3. Sensors and Actuators. B 30, 217–221 (1996)

    Article  Google Scholar 

  12. Ishihara, N.Y., Nishiguchi, H., Takita, Y.: Detection mechanism of CuO-BaTiO3 capacitive type gas sensor. In: Proceedings of Ceramic Sensors III, San Antonio, TX, USA, pp. 6–11 (1997)

    Google Scholar 

  13. Noguchi, Y., Kuroiwa, H., Takata, M.: Sensing properties of oxygen sensor using hot spot on La0.8Sr0.8Co0.8Fe0.2O3. Ceramic rod, Key Eng. Mater., 160–170, 79–82 (1999)

    Google Scholar 

  14. Lukaszewicz, J.P., Miura, N., Yamazoe, N.: A LaF3 based oxygen sensor with pervoskite-type oxide electrode operative at a room temperature. Sens. and Actuat. B 1, 95–198 (1990)

    Google Scholar 

  15. Shuk, P., Kharton, V., Tichonova, L., Wiemhofer, H.D., Guth, U., Gopel, W.: Electrodes for oxygen sensors based on rare earth magnates or cobaltite. Sensors and Actuators ctuat. B 16, 401–405 (1993)

    Article  Google Scholar 

  16. Yamaura, H., Tamaki, J., Miura, N., Yamazoe, N.: NOx sensing properties of metal titanate based semiconductor sensor at elevated temperature, Engineering Science Reports, Kyushu University, Japan, pp. 341–346 (1995)

    Google Scholar 

  17. Dorman, D.C., Brenneman, K.A., Struve, M.F., Miller, J.R.A., Marshal, M.W.: Fertility and developmental neurotoxicity effects of inhaled hydrogen sulfide in Sprague-Dawley rats. Neurotoxicology and Teratology 22(1), 71–84 (2000)

    Google Scholar 

  18. Struve, M.F., Brisbois, J.N., James, R.A., Marshal, M.W., Dorman, D.C.: Nurotoxicology 22, 375C (2001)

    Google Scholar 

  19. Jin, T., Yamazaki, I.K., Kikuta, T., Nakatani, N.: H2S sensing property of porous SnO2 sputtered films coated with various doping films. Vacuum 80, 723–725 (2006)

    Google Scholar 

  20. Jain, G.H., Patil, L.A.: CuO-doped BSST thick film resistors for ppb level H2S gas sensing at room temperature. Sensors and Actuators. B 123, 246–253 (2007)

    Article  Google Scholar 

  21. Sen, S., Bhandarkar, V., Muthea, K.P., Roy, M., Deshpande, S.K., Aiyer, R.C., Gupta, S.K., Yakhmi, J.V., Sahni, V.C.: Highly sensitive hydrogen sulphide sensors operable at room temperature. Sensors and Actuators B 115, 270–275 (2006)

    Article  Google Scholar 

  22. Malyshev, V.V., Pislyakov, A.V.: SnO2-based thick-film-resistive sensor for H2S detection in the concentration range of 1–10 mg m-3. Sensors and Actuators B 47, 181–188 (1998)

    Article  Google Scholar 

  23. Frtihberger, B., Grunze, M., Dwyer, D.J.: Surface chemistry of H2S sensitive tungsten oxide films. Sensors and Actuator; B 31, 167–174 (1996)

    Article  Google Scholar 

  24. Ianghua, K., Yadong, L.: High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sensors and Actuators B 105, 449–453 (2005)

    Article  Google Scholar 

  25. Niranjan, R.S., Patil, K.R., Sainkar, S.R., Mulla, I.S.: High H2S-sensitive copper-doped tin oxide thin film. Materials Chemistry and Physics 80, 250–256 (2003)

    Article  Google Scholar 

  26. Wagh, M.S., Jain, G.H., Patil, D.R., Patil, S.A., Patil, L.A.: Modified zinc oxide thick films resistors as NH3 gas sensors. Sensors and Actuators B 115, 125–133 (2006)

    Google Scholar 

  27. Jain, G.H., Patil, L.A., Wagh, M.S., Patil, D.R., Patil, S.A., Amalnerkar, D.P.: Surface modified BaTiO3 thick film resistors as H2S gas sensor. Sensors and Actuators B 117, 159–165 (2006)

    Article  Google Scholar 

  28. Zhou, Z.G., Tang, Z.L., Zhang, Z.T., Wlodarski, W.: Pervoskite oxides of PTCR ceramics as a chemical sensors. Sens. Actuators B 77, 22–26 (2001)

    Article  Google Scholar 

  29. Devi, G.S., Manorama, S., Rao, V.J.: High sensitivity and selectivity of an SnO2 to H2S at around 100 oC. Sensors and Actuators, B 28, 31–37 (1995)

    Article  Google Scholar 

  30. Chowdhuri, A., Sharma, P., Gupta, V., Sreenivas, K., Rao, K.: H2S gas sensing mechanism of SnO2 films with ultrathin CuO dotted islands. Journal of applied physics, 2172–2180 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaikwad, V.B., Borhade, A.V., Baste, Y.R., Kajale, D.D., Jain, G.H. (2009). Electrical and Gas Sensing Perfomanance of Coppergermanate. In: Mukhopadhyay, S.C., Gupta, G.S., Huang, R.YM. (eds) Recent Advances in Sensing Technology. Lecture Notes in Electrical Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00578-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00578-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00577-0

  • Online ISBN: 978-3-642-00578-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics