Skip to main content

Finite Element and Animal Studies of Scar Contractions Leading to Chronic Wounds

  • Chapter
Bioengineering Research of Chronic Wounds

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 1))

  • 1368 Accesses

Abstract

Abnormally healing or chronic wounds can result in excessive scar contraction. While beneficial in reducing the overall size of the wound, excessive scar contraction has numerous negative side-effects. It can deform the surrounding skin; inhibit motion where contraction occurs near joints; cause tissue necrosis and induce pain. This study presents an experimental and finite element model of scar contraction. The constitutive model of skin is represented by a validated orthotropic-viscoelastic law. The finite element model successfully simulated key characteristics observed in the experiment, in particular, the size and pattern of wrinkles that formed around the contracting scar. The orthotropic nature of skin significantly influences the orientation of the wrinkles – they form in a direction perpendicular to the Langer lines in skin. The size of the wrinkles is limited by the pre-stress inherent in skin. The wrinkle range decreased 67% and the wrinkle length decreased 83% when the skin tension was increased from 2.9 to 12.1 Nm-1. Also, a non-linear constitutive law better simulates the behavior of skin than a linear law. The proposed model will be useful in designing strategies to improve the healing of chronic wounds. These strategies would include the application of appropriate mechanical forces in the region of a wound to promote healing, minimize scarring and improve the quality of life of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, F.B.: Scar Prognosis of Wounds. Brit. J. Plast. Surg. 13, 47–54 (1960)

    Article  Google Scholar 

  2. Alexander, H., Cook, T.H.: Accounting for Natural Tension in the Mechanical Testing of Human Skin. J. Investig. Dermatol. 69, 310–314 (1977)

    Article  Google Scholar 

  3. Barbarino, G.G., Jabareen, M., Trzewik, J., Nkengne, A., Stamatas, G., Mazza, E.: Development and Validation of a Three-Dimensional Finite Element Model of the Face. J. Biomech. Eng. 131, 041006–041011 (2009)

    Article  Google Scholar 

  4. Batisse, D., Bazin, R., Baldeweck, T., Querleux, B., Lévêque, J.-L.: Influence of Age on the Wrinkling Capacities of Skin. Skin Res. Technol. 8, 148–154 (2002)

    Article  Google Scholar 

  5. Bergström, J.S., Boyce, M.C.: Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers. J. Mech. Phys. Solids 46, 931–954 (1998)

    Article  MATH  Google Scholar 

  6. Bischoff, J., Arruda, E., Grosh, K.: A Rheological Network Model for the Continuum Anisotropic and Viscoelastic Behavior of Soft Tissue. Biomech. Model Mech. 3, 56–65 (2004)

    Article  Google Scholar 

  7. Bischoff, J.E., Arruda, E.A., Grosh, K.: A Microstructurally Based Orthotropic Hyperelastic Constitutive Law. J. Appl. Mech. 69, 570–579 (2002)

    Article  MATH  Google Scholar 

  8. Borges, A.F.: Relaxed Skin Tension Lines. Dermatol. Clin. 7, 169–177 (1989)

    MathSciNet  Google Scholar 

  9. Boyce, M.C., Weber, G.G., Parks, D.M.: On the Kinematics of Finite Strain Plasticity. J. Mech. Phys. Solids 37, 647–665 (1989)

    Article  MATH  Google Scholar 

  10. Bucalo, B.D., Iriondo, M.: Photoelastic Models of Wound Closure Stress. Dermatol. Surg. 21, 210–212 (1995)

    Google Scholar 

  11. Cacou, C., Muir, I.F.K.: Effects of Plane Mechanical Forces in Wound Healing in Humans. J. Roy. Coll. Surg. Edin. 40, 38–41 (1995)

    Google Scholar 

  12. Cerda, E.: Mechanics of Scars. J. Biomech. 38, 1598–1603 (2005)

    Article  Google Scholar 

  13. Chabanas, M., Luboz, V., Payan, Y.: Patient Specific Finite Element Model of the Face Soft Tissues for Computer-Assisted Maxillofacial Surgery. Med. Image Anal. 7, 131–151 (2003)

    Article  Google Scholar 

  14. Daly, C.H.: Biomechanical Properties of Dermis. J. Investig. Dermatol. 79, s17–s20 (1982)

    Article  Google Scholar 

  15. de Gennes, P.G.: Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys. 55, 572–579 (1971)

    Article  Google Scholar 

  16. Diridollou, S., Patat, F., Gens, F., Vaillant, L., Black, D., Lagarde, J.M., Gall, Y., Berson, M.: In Vivo Model of the Mechanical Properties of the Human Skin under Suction. Skin Res. Technol. 6, 214–221 (2000)

    Article  Google Scholar 

  17. Flynn, C.: The Design and Validation of a Multi-Layer Model of Human Skin. PhD Thesis. Institute of Technology, Sligo (2007)

    Google Scholar 

  18. Flynn, C., McCormack, B.A.O.: Finite Element Modelling of Forearm Skin Wrinkling. Skin Res. Technol. 14, 261–269 (2008a)

    Article  Google Scholar 

  19. Flynn, C., McCormack, B.A.O.: A Simplified Model of Scar Contraction. J. Biomech. 41, 1582–1589 (2008b)

    Article  Google Scholar 

  20. Fyhrie, D.P., Barone, J.R.: Polymer Dynamics as a Mechanistic Model for the Flow-Independent Viscoelasticity of Cartilage. J. Biomech. Eng. 125, 578–584 (2003)

    Article  Google Scholar 

  21. Géminard, J.C., Bernai, R., Melo, F.: Wrinkle Formations in Axi-Symmetrically Stretched Membranes. Eur. Phys. J. E. 15, 117–126 (2004)

    Article  Google Scholar 

  22. Gökrem, S., Özdemir, O., Demirseren, M.E., Katircioğlu, A., Can, Z., Sevin, K.: Correction of a Mild Breast Contracture with a New Technique: “V-Y-Z-Plasty”. Eur. J. Plast. Surg. 26, 255–257 (2003)

    Article  Google Scholar 

  23. Har-Shai, Y., Bodner, S.R., Egozy-Golan, D., Lindenbaum, E.S., Ben-Izhak, O., Mitz, V., Hirshowitz, B.: Mechanical Properties and Microstructure of the Superficial Musculoaponeurotic System. Plast. Reconstr. Surg. 98, 59–70 (1996)

    Article  Google Scholar 

  24. Hibbitt, D., Karlsson, B., Sorenson, P.: Abaqus Analysis User’s Manual Version 6.5 ABAQUS, Inc. Pawtucket, RI (2004)

    Google Scholar 

  25. Kirby, S.D., Wang, B., To, C.W.S., Lampe, H.B.: Nonlinear, Three-Dimensional Finite-Element Model of Skin Biomechanics. J. Otolaryngol. 27, 153–160 (1998)

    Google Scholar 

  26. Lanir, Y.: Constitutive Equations for Fibrous Connective Tissues. J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  27. Lanir, Y., Fung, Y.C.: Two-Dimensional Mechanical Properties of Rabbit Skin–Ii. Experimental Results. J. Biomech. 7, 171–174 (1974)

    Article  Google Scholar 

  28. Leider, M., Buncke, C.M.: Physical Dimensions of the Skin; Determination of the Specific Gravity of Skin, Hair, and Nail. A.M.A. Archives of Dermatology and Syphilology 69, 563–569 (1954)

    Google Scholar 

  29. Lott-Crumpler, D.A., Chaudhry, H.R.: Optimal Patterns for Suturing Wounds of Complex Shapes to Foster Healing. J. Biomech. 34, 51–58 (2001)

    Article  Google Scholar 

  30. Olsen, L., Sherratt, J.A., Maini, P.K.: A Mechanochemical Model for Adult Dermal Wound Contraction and the Permanence of the Contracted Tissue Displacement Profile. J. Theor. Biol. 177, 113–128 (1995)

    Article  Google Scholar 

  31. Piérard, G.E., Uhoda, I., Piérard-Franchimont, C.: From Skin Microrelief to Wrinkles. An Area Ripe for Investigation. J. Cosmet. Dermatol. 2, 21–28 (2003)

    Article  Google Scholar 

  32. Posnett, J., Franks, P.J.: The Burden of Chronic Wounds in the UK. Nurs. Times 104, 44–45 (2008)

    Google Scholar 

  33. Price, E.: Design and Validation of a Device to Measure the Cutting Edge Profile of Osteotomes. Master Thesis. Institute of Technology, Sligo (2005)

    Google Scholar 

  34. Retel, V., Vescovo, P., Jacquet, E., Trivaudey, F., Varchon, D., Burtheret, A.: Nonlinear Model of Skin Mechanical Behaviour Analysis with Finite Element Method. Skin Res. Technol. 7, 152–158 (2001)

    Article  Google Scholar 

  35. Robson, M.C.: Wound Infection: A Failure of Wound Healing Caused by an Imbalance of Bacteria. Surg. Clin. N. Amer. 77, 637–650 (1997)

    Article  Google Scholar 

  36. Rubin, M.B., Bodner, S.R., Binur, N.S.: An Elastic-Viscoplastic Model for Excised Facial Tissues. J. Biomech. Eng. 120, 686–689 (1998)

    Article  Google Scholar 

  37. Rudolph, R.: Contraction and the Control of Contraction. World. J. Surg. 4, 279–287 (1980)

    Article  MathSciNet  Google Scholar 

  38. Schneider, D.: Viscoelasticity and Tearing Strength of the Human Skin. PhD Thesis. University of California (1982)

    Google Scholar 

  39. Sherratt, J.A., Dallon, J.C.: Theoretical Models of Wound Healing: Past Successes and Future Challenges. C. R. Biol. 325, 557–564 (2002)

    Article  Google Scholar 

  40. Silver, F.H., Freeman, J.W., DeVore, D.: Viscoelastic Properties of Human Skin and Processed Dermis. Skin Res. Technol. 7, 18–23 (2001)

    Article  Google Scholar 

  41. Stadelmann, W.K., Digenis, A.G., Tobin, G.R.: Physiology and Healing Dynamics of Chronic Cutaneous Wounds. Am. J. Surg. 176, S26–S38 (1998)

    Article  Google Scholar 

  42. Tønseth, K.A., Hokland, B.M.: Evaluation of Microcirculation and Wound-Closing Tension after Undermining the Skin. A Study in a Porcine Model Using Laser Doppler Perfusion Imaging. Eur. J. Plast. Surg. 27, 295–297 (2004)

    Article  Google Scholar 

  43. Tranquillo, R.T., Murray, J.D.: Continuum Model of Fibroblast-Driven Wound Contraction: Inflammation-Mediation. J. Theor. Biol. 158, 135–172 (1992)

    Article  Google Scholar 

  44. Van den Kerckhove, E., Stappaerts, K., Boeckx, W., Van den Hof, B., Monstrey, S., Van der Kelen, A., De Cubber, J.: Silicones in the Rehabilitation of Burns: A Review and Overview. Burns 27, 205–214 (2001)

    Article  Google Scholar 

  45. Walker, M., Hadgraft, J., Lane, M.E.: Investigation of the Permeability Characteristics of Peri-Ulcer and Whole Ischaemic Skin Tissue. Int. J. Pharm. 357, 1–5 (2008)

    Article  Google Scholar 

  46. Wan Abas, W.A.B.: Biaxial Tension Test of Human Skin in Vivo. Bio-Med. Mater. Eng. 4, 473–486 (1994)

    Google Scholar 

  47. Wu, J.Z., Cutlip, R.G., Welcome, D., Dong, R.G.: Estimation of the Viscous Properties of Skin and Subcutaneous Tissue in Uniaxial Stress Relaxation Tests. Bio-Med. Mater. Eng. 16, 53–66 (2006a)

    Google Scholar 

  48. Wu, K.S., van Osdol, W.W., Dauskardt, R.H.: Mechanical Properties of Human Stratum Corneum: Effects of Temperature, Hydration, and Chemical Treatment. Biomaterials 27, 785–795 (2006b)

    Article  Google Scholar 

  49. Yoshida, H., Tsutsumi, S., Mizunuma, M., Yanai, A.: A Surgical Simulation System of Skin Sutures Using a Three-Dimensional Finite Element Method. Clin. Biomech. 16, 621–626 (2001)

    Article  Google Scholar 

  50. Yuan, Y., Verma, R.: Measuring Microelastic Properties of Stratum Corneum. Colloid Surface B 48, 6–12 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Flynn, C., McCormack, B. (2009). Finite Element and Animal Studies of Scar Contractions Leading to Chronic Wounds. In: Gefen, A. (eds) Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00534-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00534-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00533-6

  • Online ISBN: 978-3-642-00534-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics