Skip to main content

A Finite-Element Biomechanical Model for Evaluating Buttock Tissue Loads in Seated Individuals with Spinal Cord Injury

  • Chapter
Bioengineering Research of Chronic Wounds

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 1))

Abstract

Pressure ulcer remains to be a serious problem in today’s healthcare, which has a detrimental impact on the quality of life of the wheelchair users, especially for those with spinal cord injury, and imposes a tremendous economic burden on health care. Development of effective prevention strategies and treatment modalities of pressure ulcer calls for improved understanding of soft tissue response to external loading. Initial evidences suggest that the stress in deep tissue surrounding a bony prominence may reach multiple times higher than that at the superficial skin, however, interface pressure still is the only available clinical tool to assess sitting load, which provides little to no insight to the situation in deep tissues. Moreover, experimental evaluation of the load transfer, from superficial through multiple layers of soft tissues to the load bearing bones, remains nearly impossible. Therefore, finite element models are a powerful tool to help examine biological structures and predict outcomes from potential interventions. However, to date, successful finite element models for simulating buttock tissue response in sitting are rare. In this chapter, the authors present a comprehensive description of the methodology building and validating a 3-dimensional finite element model for human buttocks with the consideration of the joint configuration and realistic boundary conditions in a sitting posture. In addition, with the validated model, sitting induced soft tissue deformation, internal pressure, and von-Mises stress were computed in a practical application evaluating a novel seating system designed to prevent pressure ulcer formation and promote healing of existing pressure ulcer. Along with the methodology of establishing and validating the buttock finite element model for sitting research, and the application example, the authors provide explicit opinions for various weaknesses usually seen in this field and suggest possible future directions for deepening our knowledge and advancing our technologies for performing successful and practical finite element simulation for buttock tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agache, P.G., et al.: Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. Res. 269, 221–232 (1980)

    Article  Google Scholar 

  2. Ankrom, M.A., et al.: Pressure-related deep tissue injury under intact skin and the current pressure ulcer staging systems. Adv. Skin Wound Care 18(1), 35–42 (2005)

    Article  Google Scholar 

  3. Azar, F.S., et al.: A finite model of the breast for predicting mechanical deformations during Biopsy procedureelement. In: IEEE workshop on Mathematical methods in biomedical image analysis, South Carolina, pp. 38–45 (2000)

    Google Scholar 

  4. Besier, T.F., et al.: The influence of femoral interanl and external rotation on cartilage stresses within the patellofemoral joint. J. Orthop. Res. 26(12), 1627–1635 (2008)

    Article  Google Scholar 

  5. Bielser, D., et al.: Interactive cuts through 3-dimensional soft tissue. Eurographics 18(3) (1999)

    Google Scholar 

  6. Bonet, J., et al.: Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  7. Bosboom, E.M., et al.: Quantifying pressure sore-related muscle damage using high-resolution MRI. J. Appl. Physiol. 95(6), 2235–2240 (2003)

    Google Scholar 

  8. Bosboom, E.M., et al.: Passive transverse mechanical properties of skeletal muscle under in vivo compression. Journal of biomechanics 34(10), 1365–1368 (2001)

    Article  Google Scholar 

  9. Bouten, C.V., et al.: The etiology of pressure ulcers: skin deep or muscle bound? Arch. Phys. Med. Rehabil. 84, 616–619 (2003)

    Article  Google Scholar 

  10. Bradley, C.P., et al.: Geometric modeling of the human torso using cubic hermite elements. Ann. Biomed. Eng. 25(1), 96–111 (1997)

    Article  Google Scholar 

  11. Bro-Nielsen, M., et al.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Computer Graphics Forum 15(3), 57–66 (1996)

    Article  Google Scholar 

  12. Brosh, T., et al.: Modeling the body/chair interaction - an integrative experimental-numerical approach. Clin. Biomech. (Bristol, Avon) 15(3), 217–219 (2000)

    Article  Google Scholar 

  13. Castro, M.J., et al.: Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur. J. Appl. Physiol. Occup. Physiol. 80(4), 373–378 (1999)

    Article  Google Scholar 

  14. Castro, M.J., et al.: Influence of complete spinal cord injury on skeletal muscle mechanics within the first 6 months of injury. Eur. J. Appl. Physiol. 81(1-2), 128–131 (2000)

    Article  Google Scholar 

  15. Chow, W., et al.: Deformation and stress in soft body tissue of a sitting person. J. Biomech. Eng. 100, 79–87 (1978)

    Google Scholar 

  16. Dabnichki, P., et al.: Deformation and stress analysis of supported buttock contact. Proc. Inst. Mech. Engrs. 208, 9–17 (1994)

    Google Scholar 

  17. Daniel, R.K., et al.: Etiologic factors in pressure sores: an experimental model. Arch. Phys. Med. Rehabil. 62, 492–498 (1981)

    Google Scholar 

  18. Dupont-Versteegden, E.E., et al.: Early changes in muscle fiber size and gene expression in response to spinal cord transection and excercise. Am. J. Physiol. 275, C1124–C1133 (1998)

    Google Scholar 

  19. Edsberg, L.E.: Microstructural evaluation of human skin subjected to static versus cyclic pressures. J. Rehabil. Res. Dev. 38(5), 477–486 (2001)

    Google Scholar 

  20. Edsberg, L.E., et al.: Microstructural and mechanical characterization of human tissue at and adjacent to pressure ulcers. J. Rehabil. Res. Dev. 37(4), 463–471 (2000)

    Google Scholar 

  21. Edsberg, L.E., et al.: Mechanical characteristics of human skin subjected to static versus cyclic normal pressures. J. Rehabil. Res. Dev. 36(2), 133–141 (1999)

    Google Scholar 

  22. Ferrant, M., et al.: 3D image matching using a finite element based elastic deformation model. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 202–209. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Fung, Y.C.: Biomechanics: Mechanical properties of living tissue, New York (1993)

    Google Scholar 

  24. Gefen, A., et al.: In vivo muscle stiffening under bone compression promotes deep pressure sores. J. Biomech. Eng. 127(3), 512–524 (2005)

    Article  Google Scholar 

  25. Goldstein, B., et al.: Skin response to repetitive mechanical stress: a new experimental model in pig. Arch. Phys. Med. Rehabil. 79(3), 265–272 (1998)

    Article  Google Scholar 

  26. Greve, J.M., et al.: Functional electrical stimulation (FES): muscle histochemical analysis. Paraplegia 31(12), 764–770 (1993)

    Google Scholar 

  27. Grimby, G., et al.: Muscle fiber composition in patients with traumatic cord lesion. Scand. J. Rehabil. Med. 8(1), 37–42 (1976)

    Google Scholar 

  28. Hagemann, A., et al.: Biomechanical modelling of the human head for physically based, nonrigid registration. IEEE Tran. Med. Imaging 18(10), 875–884 (1999)

    Article  Google Scholar 

  29. Kaplan, R.L.: Physical Medicine & Rehabilitation Pearls of Wisdom. Boston Medical Publishing Corporation, Lincoln (2003)

    Google Scholar 

  30. Keyak, J.H., et al.: Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31(2), 125–133 (1998)

    Article  Google Scholar 

  31. Kosiak, M.: Etiology of decubitus ulcers. Arch. Phys. Med. Rehabil. 42, 19–29 (1961)

    Google Scholar 

  32. Kuroda, S., et al.: Finite element analysis of undermining of pressure ulcer with a simple cylinder model. J. Nippon. Med. Sch. 72(3), 174–178 (2005)

    Article  Google Scholar 

  33. Landry, E., et al.: Body weight, limb size, and muscular properties of early paraplegic mice. J. Neurotrauma. 21(8), 1008–1016 (2004)

    Article  Google Scholar 

  34. Larabee, W.F.: A finite element model of skin deformation: I. Biomechanics of skin and soft tissue: a review. Laryngoscope 96, 399–405 (1986)

    Google Scholar 

  35. Larabee, W.F., et al.: A finite element model of skin deformation: III. The finite element model. Laryngoscope 96, 413–419 (1986)

    Google Scholar 

  36. Lieber, R.L., et al.: Long-term effects of spinal cord transection on fast and slow rat skeletal muscle. II. Morphometric properties. Exp. Neurol. 91(3), 435–448 (1986a)

    Article  Google Scholar 

  37. Lieber, R.L., et al.: Long-term effects of spinal cord transection on fast and slow rat skeletal muscle. I. Contractile properties. Exp. Neurol. 91(3), 423–434 (1986b)

    Article  Google Scholar 

  38. Lin, F., et al.: Finite Element (FE) Analysis for Evaluation of Pressure Ulcer on the Buttock: Part I: Development and validation, Summer Bioengineering Conference, Amelia Island, June 23 (2006)

    Google Scholar 

  39. Lin, F., et al.: FEM model for evaluating buttock tissue response under sitting load. In: 26th Annual Internation Conference of IEEE EMBS, San Francisco, CA. IEEE, Los Alamitos (2004)

    Google Scholar 

  40. Linder-Ganz, E., et al.: Mechanical compression-induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models. J. Appl. Physiol. 96(6), 2034–2049 (2004)

    Article  Google Scholar 

  41. Linder-Ganz, E., et al.: Assessment of mechanical conditions in sub-dermal tissues during sitting: A combined experimental-MRI and finite element approach. J. Biomech. 40(7), 1443–1454 (2007)

    Article  Google Scholar 

  42. Linder-Ganz, E., et al.: Real-time finite element monitoring of sub-dermal tissue stresses in individuals with spinal cord injury: toward prevention of pressure ulcers. Ann. Biomed. Eng. 37(2), 387–400 (2009)

    Article  Google Scholar 

  43. Lotta, S., et al.: Morphometric and neurophysiological analysis of skeletal muscle in paraplegic patients with traumatic cord lesion. Paraplegia 29(4), 247–252 (1991)

    Google Scholar 

  44. Makhsous, M., et al.: Finite Element Analysis for Evaluation of Pressure Ulcer on the Buttock: Development and Validation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 517–525 (2007a)

    Article  Google Scholar 

  45. Makhsous, M., et al.: Sitting with adjustable ischial and back supports: Biomechanical changes. Spine 28(11), 1113–1121 (2003)

    Article  Google Scholar 

  46. Makhsous, M., et al.: Periodically Relieving Ischial Sitting Load to Decrease the Risk of Pressure Ulcers. Arch. Phys. Med. Rehabil. 88(7), 862–870 (2007b)

    Article  Google Scholar 

  47. Martin, T.P., et al.: Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle. J. Appl. Physiol. 72(4), 1401–1406 (1992)

    Google Scholar 

  48. Masi, A.T., et al.: Human resting muscle tone (HRMT): narrative introduction and modern concepts. J. Bodyw. Mov. Ther. 12(4), 320–332 (2008)

    Article  Google Scholar 

  49. Mason, P.: Dynamic stiffness and crossbridge action in muscle. Biophys. Struct. Mech. 4(1), 15–25 (1977)

    Article  Google Scholar 

  50. May-Newman, K., et al.: Homogenization modeling for the mechanics of perfused myocardium. Prog. Biophys. Mol. Biol. 69(2), 463–481 (1998)

    Article  Google Scholar 

  51. Mazella, F., et al.: Auto acquisition of elastic properties of soft tissues for surgical simulation. Stanford-NASA biocomputation Center, Stanford (1999)

    Google Scholar 

  52. Metz, H., et al.: A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech. 3(4), 453–458 (1970)

    Article  Google Scholar 

  53. Miga, M.I., et al.: Model-updated image-guided neurosurgery using the finite element method: Incorporation of the Falx Cerebri. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 900–909. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  54. Morrey, B.F., An, K.-N.: Biomechanics of the shoulder. In: Rockwood Jr., C.A., Matsen III, F.A. (eds.) The Shoulder, vol. 1, pp. 208–245 (1990)

    Google Scholar 

  55. Mow, V.C., et al.: Fluid transport and mechanical properties of articular cartilage. J. Biomech. 17, 377–394 (1984)

    Article  Google Scholar 

  56. Nola, G.T., et al.: Differential response of skin and muscle in the experimental production of pressure sores. Plast. Reconstr. Surg. 66, 728–733 (1980)

    Article  Google Scholar 

  57. Oomens, C., et al.: Can loaded interface characteristics influence strain distributions in muscle adjacent to bony prominences? Comput. Methods Biomech. Biomed. Engin. 6(3), 171–180 (2003)

    Article  Google Scholar 

  58. Protz, P.R., et al.: Implementing magnetic resonanc imaging for the quantification of load-bearing buttocks tissues. In: The 13th Annual RESNA Conference, Washington, DC. RESNA Press (1990)

    Google Scholar 

  59. Ragan, R., et al.: Seat-interface pressures on various thicknesses of foam wheelchair cushions: a finite modeling approach. Arch. Phys. Med. Rehabil. 83(6), 872–875 (2002)

    Article  Google Scholar 

  60. Round, J.M., et al.: Fibre areas and histochemical fibre types in the quadriceps muscle of paraplegic subjects. J. Neurol. Sci. 116(2), 207–211 (1993)

    Article  Google Scholar 

  61. Roy, R.R., et al.: The plasticity of skeletal muscle: effects of neuromuscular activity. Exerc. Sport Sci. Rev. 19, 269–312 (1991)

    Article  Google Scholar 

  62. Salcido, R., et al.: Histopathology of pressure ulcers as a result of sequential computer-controlled pressure sessions in a fuzzy rat model. Adv. Wound Care 7(5), 23–24, 26, 28 passim (1994)

    Google Scholar 

  63. Samani, A., et al.: Biomechanical 3D finite element modeling of the human breast using MRI data. IEEE Tran. on Medical Imaging 20(4), 271–279 (2001)

    Article  Google Scholar 

  64. Sanders, J.E., et al.: Collagen fibril diameters increase and fibril densities decrease in skin subjected to repetitive compressive and shear stresses. J. Biomech. 34(12), 1581–1587 (2001)

    Article  Google Scholar 

  65. Sanders, J.E., et al.: Skin response to mechanical stress: adaptation rather than breakdown–a review of the literature. J. Rehabil. Res. Dev. 32(3), 214–226 (1995)

    Google Scholar 

  66. Sarvazyan, D., et al.: Elastic imaging as a new modality of medical imaging for cancer detection. In: Proceedings of the international workshop on interaction of ultrasound with biological media, Valenciennes, France, pp. 69–81 (1994)

    Google Scholar 

  67. Scelsi, R., et al.: Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Histochemical and ultrastructural aspects of rectus femoris muscle. Acta. Neuropathol. (Berl) 57(4), 243–248 (1982)

    Article  Google Scholar 

  68. Schnabel, J.A., et al.: Validation of non-rigid registration using finite element methods. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 344–357. Springer, Heidelberg (2001)

    Google Scholar 

  69. Sonka, M., et al.: Medical imaging. SPIE press, Washington(2000)

    Google Scholar 

  70. Stilwill, E.W., et al.: Histochemical and morphologic changes in skeletal muscle following cervical cord injury: a study of upper and lower motor neuron lesions. Arch. Phys. Med. Rehabil. 58(5), 201–206 (1977)

    Google Scholar 

  71. Sun, Q., et al.: Soft Tissue Stress in Buttock-Thigh of a Seated Individual Elucidated by a 3D FE Model. In: RESNA 28th Int. Conf., June 23-27 (2005)

    Google Scholar 

  72. Todd, B.A., et al.: Three-dimensional computer model of the human buttocks, in vivo. J. Rehabil. Res. Dev. 31(2), 111–119 (1994)

    Google Scholar 

  73. Wagnac, E.L., et al.: A new method to generate a patient-specific finite element model of the human buttocks. IEEE Trans. Biomed. Eng. 55(2), 774–783 (2008)

    Article  Google Scholar 

  74. Wang, Y.N., et al.: How does skin adapt to repetitive mechanical stress to become load tolerant? Med. Hypotheses 61(1), 29–35 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Makhsous, M., Lin, F. (2009). A Finite-Element Biomechanical Model for Evaluating Buttock Tissue Loads in Seated Individuals with Spinal Cord Injury. In: Gefen, A. (eds) Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00534-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00534-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00533-6

  • Online ISBN: 978-3-642-00534-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics