Skip to main content

A Suite of Continuum Models for Different Aspects in Wound Healing

  • Chapter

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 1))

Abstract

Wound healing proceeds through a sequence of partly overlapping processes that can be classified into three phases: inflammation, proliferation and remodeling. Among them, wound closure, angiogenesis and wound contraction play a significant role. First, the connective tissue that is present initially is replaced with fibrous tissue. The production of fibrous tissue by fibroblasts is initiated by fibroblast migration into the wound region and enhanced by the proliferation of these cells. Since the fibroblasts start pulling on the surrounding tissue, the wound starts contracting. Mathematically, the visco-elastic equations are solved in combination with a set of diffusion-convection-reaction equations. Once connective tissue has been replaced with fibrous tissue, a capillary network is established. The capillary network formation is enhanced by a macrophage derived growth factor, of which its production is initiated by a lack of oxygen. Several models exist and are discussed here for this partial process. For the wound re-epithelialization, in which the wound is actually closed by a layer of epidermal cells, several models are used. In this work, we will consider a simplified mathematical model that tracks the epidermal cell density and a generic growth factor that either inhibits or activates this process. Further, an alternative model is discussed, which contains a discontinuous switch mechanism, based on the assumption that the wound edge moves as a result of its curvature and of the concentration of a generic growth factor. In this work, finite element results will be presented, as well as parts of the performed mathematical analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Huiskes, R., van Driel, W.D., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J. Mater. Sc.: Materials in medicine 8, 785–788 (1997)

    Article  Google Scholar 

  • Ament, C., Hofer, E.P.: A fuzzy logic model of fracture healing. J. Biomech. 33, 961–968 (2000)

    Article  Google Scholar 

  • Andreykiv, A.: Simulation of bone ingrowth, Thesis at the Delft University, Faculty of Mechanical Engineering (2006)

    Google Scholar 

  • Bailon-Plaza, A., van der Meulen, M.C.H.: A mathematical framework to study the effect of growth factors that influence fracture healing. J. Theor. Biol. 212, 191–209 (2001)

    Article  Google Scholar 

  • LaCroix, D., Prendergast, P.J.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. BioMech. 35(9), 1163–1171 (2002)

    Article  Google Scholar 

  • Calvo, P.M.: Mathematical modeling and computational simulation of the mechanobiological behavior of bone implants interfaces, thesis at the University of Zaragoza, Spain (2008)

    Google Scholar 

  • Martínez, G., García-Aznar, J.M., Doblaré, M., Cerrolaza, M.: External bone remodeling through boundary elements and damage mechanics. Mathematics and Computers in Simulation 73, 183–199 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • García-Aznar, J.M., Rueberg, T., Doblaré, M.: A bone remodeling model coupling microdamage growth and repair by 3D BMU-activity. Biomechanical Models in Mechanobiology 4, 147–167 (2005)

    Article  Google Scholar 

  • Doblaré, M., García-Aznar, J.M.: On the numerical modeling of growth, differentiation and damage in structural living tissues. Archives of Computatational Methods in Engineering 11(4), 1–44 (2005)

    Google Scholar 

  • Doblaré, M., Garciá-Aznar, J.M.: Application of an anisotropic bone-remodeling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. Journal of Biomechanics 34, 1157–1170 (2001)

    Article  Google Scholar 

  • García-Aznar, J.M., Doblaré, M., Cegoñino, J.: Bone remodeling simulation: a tool for implant design. Computational Materials Science 25, 100–114 (2002)

    Article  Google Scholar 

  • Fornells, P., Garciá-Aznar, J.M., Doblaré, M.: A finite element dual porosity approach to model deformation-induced fluid flow in cortical bone. Annals of Biomedical Engineering 35(10), 1687–1698 (2007)

    Article  Google Scholar 

  • Doblaré, M., García, J.M.: Aisotropic bone remodeling model based on a continuum damage-repair theory. Journal of Biomechanics 35, 1–17 (2002)

    Article  Google Scholar 

  • García, J.M., Martínez, M.A., Doblaré, M.: An anisotropic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355–377 (2007)

    Article  Google Scholar 

  • Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M.: Micro-macro numerical modeling of bone regeneration in tissue engineering. Computational Methods in Applied Mechanical Engineering 197, 3092–3107 (2008)

    Article  Google Scholar 

  • Davies, J.E.: Understanding peri-implant endosseous healing. Journal of Dental Education 67(8), 932–949 (2003)

    Google Scholar 

  • Chen, G., Pettet, G.J., Pearcy, M., McElwain, D.L.S.: Modeling external bone adaptation using evolutionary structural optimization. Biomechanical Models in Mechanobiology 6, 275–285 (2007)

    Article  Google Scholar 

  • Carpenter, R.D., Carter, D.R.: The mechanobiological effects of periosteal surface loads. Biomechanical Models in Mechanobiology 7, 227–242 (2008)

    Article  Google Scholar 

  • Sherratt, J.A., Murray, J.D.: Mathematical analysis of a basic model for epidermal wound healing. J. Math. Biol. 29, 389–404 (1991)

    Article  MATH  Google Scholar 

  • Filion, J., Popel, A.P.: A reaction diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Annals of Biomed. Eng. 32(5), 645–663 (2004)

    Article  Google Scholar 

  • Maggelakis, S.A.: A mathematical model for tissue replacement during epidermal wound healing. Appl. Math. Modell. 27(3), 189–196 (2003)

    Article  MATH  Google Scholar 

  • Gaffney, E.A., Pugh, K., Maini, P.K.: Investigating a simple model for cutaneous wound healing angiogenesis. J. Math. Biol. 45(4), 337–374 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Plank, M.J., Sleeman, B.D.: A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Mathem. Medic. and Biol. 20, 135–181 (2003)

    Article  MATH  Google Scholar 

  • Plank, M.J., Sleeman, B.D.: Lattice and non-lattice models of tumour angiogenesis. Bull. Mathem. Biol. 66, 1785–1819 (2004)

    Article  MathSciNet  Google Scholar 

  • Murray, J.D.: Mathematical biology II: spatial models and biomedical applications. Springer, New York (2004)

    Google Scholar 

  • Maggelakis, S.A.: Modeling the role of angiogenesis in epidermal wound healing. Discr. and Cont. Sys. 4, 267–273 (2004)

    MATH  MathSciNet  Google Scholar 

  • Adam, J.A.: A simplified model of wound healing (with particular reference to the critical size defect). Math. and Comput. Modell. 30, 23–32 (1999)

    Article  MathSciNet  Google Scholar 

  • Vermolen, F.J., Adam, J.A.: A Finite Element Model for Epidermal Wound Healing. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 70–77. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Vermolen, F.J., van Rossum, W.G., Javierre, E., Adam, J.A.: Modeling of self-healing of skin tissue. In: Self-healing materials an alternative approach to 20 centuries of materials science, pp. 337–364. Springer, Dordrecht (2007)

    Google Scholar 

  • Stadelman, W.K., Digenis, A.G., Tobin, G.R.: Physiology and healing dynamics of chronic cutaneous wounds. The American Journal of Surgery 176(2), 265–385 (1997)

    Google Scholar 

  • Olsen, L., Sherratt, J.A., Maini, P.K.: A mechanochemical model for adult dermal wound closure and the permanence of the contracted tissue displacement role. J. Theor. Biol. 177, 113–128 (1995)

    Article  Google Scholar 

  • Murray, J.D.: On the mechanochemical theory of biological pattern formation with application to vasculogenesis. Biol. Model. 326, 239–252 (2003)

    Google Scholar 

  • Wearing, H.J., Sherratt, J.D.: Keratinocyte growth factor signalling: a mathematical model of dermal-epidermal interaction in epidermal wound healing. Math. Biosc. 165, 41–62 (2000)

    Article  Google Scholar 

  • Rossiter, H., Barresi, C., Pammer, J., Rendl, M., Haigh, J., Wagner, E.F., Tschachler, E.: Loss of vascular endothelial growth factor A activity in murine epidermal keratinocytes delays wound healing and inhibits tumor formation. Cancer Research 64, 3508–3516 (2004)

    Article  Google Scholar 

  • Alarcon, T., Byrne, H., Maini, P., Panovska, J.: Mathematical modeling of angiogenesis and vascular adaptation. In: Paton, R., McNamara, L. (eds.) Studies in multidisciplinary, vol. 3, pp. 369–387 (2006)

    Google Scholar 

  • Balding, D., McElwain, D.L.S.: A mathematical model of tumour-induced capillary growth. Journal of Theoretical Biology 114, 53–73 (1985)

    Article  Google Scholar 

  • Mantzaris, N.V., Webb, S., Othmer, H.G.: Mathematical modeling of tumor-induced angiogenesis. Journal of Mathematical Biology 49, 111–187 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Vermolen, F.J.: A simplified finite element model for tissue regeneration with angiogenesis. ASCE Journal of Engineering Mechanics 135(5) (2009)

    Google Scholar 

  • Lamme, E.N.: Artificial skin and tissue regeneration, Thesis, The University of Amsterdam, the Netherlands (1999)

    Google Scholar 

  • Friesel, R.E., Maciang, T.: Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 9, 919–925 (1995)

    Google Scholar 

  • Stoletov, K.V., Ratcliffe, K.E., Terman, B.I.: Fibroblast growth factor receptor substrate 2 participates in vascular endothelial growth factor-induced signaling. FASEB J. 16, 1283–1285 (2002)

    Google Scholar 

  • Adam, J.A.: A simplified model of wound healing (with particular reference to the critical size defect). Math. and Comput. Modell. 30, 23–32 (1999)

    Article  MathSciNet  Google Scholar 

  • Adam, J.A.: The effect of surface curvature on wound healing in bone. Applied Mathematics Letters 15, 59–62 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Adam, J.A.: Inside mathematical modelling: building models in the context of wound healing in bone. Discrete and continuous dynamical systems-series B 4(1), 1–24 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold, J.S.: A simplified model of wound healing III: The critical size defect in three dimensions. Mathematical and Computer Modelling 34, 385–392 (2001)

    Article  MATH  Google Scholar 

  • Javierre, E., Vermolen, F.J., Vuik, C., van der Zwaag, S.: A mathematical approach to epidermal wound closure: Model Analysis and Computer Simulations. J. Mathematical Biology (2008) (to appear), http://www.springerlink.com/content/w4j6633345j7228k/fulltext.pdf , doi:10.1007/s00285-008-0242-7

  • Vermolen, F.J., van Baaren, E., Adam, J.A.: A simplified model for growth factor induced healing of circular wounds. Mathematical and Computer Modeling 44, 887–898 (2006)

    Article  MATH  Google Scholar 

  • Britton, N.F., Chaplain, M.A.J.: A qualitative analysis of some models of tissue growth. Mathematical Biosciences 113, 77–89 (1993)

    Article  MATH  Google Scholar 

  • Adam, J.A.: A simplified model for tumor growth. Mathematical Biosciences 87, 229–244 (1987)

    Google Scholar 

  • Shymko, R.M., Glass, L.: Cellular and geometric control of tissue growth and mitotic instability. Journal of Theoretical Biology 63, 355–374 (1976)

    Article  Google Scholar 

  • Hogea, C.S., Murray, B.T., Sethian, J.A.: Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. Journal of Mathematical Biology 53, 86–134 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Vermolen, F.J., Javierre, E.: On the construction of analytic solutions for a diffusion-reaction equation with a discontinuous switch mechanism. Journal of Computational and Applied Mathematics (to appear, 2009), doi:10.1016/j.cam.2009.05.022

    Google Scholar 

  • Zemskov, S., Vermolen, F.J., Javierre, E.: An advanced finite element method for wound healing and crack closure (in progress, 2009)

    Google Scholar 

  • Hundsdorfer, W., Verwer, J.G.: Numerical solution of time-dependent advection-diffusion-reaction equations. Series in Computational Mathematics. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  • Javierre, E., Moreo, P., Doblaré, M., García-Aznar, M.J.: Computational Modelling of wound contraction. In: Proceedings of the Congreso de Métodos Numéricos en Ingeniería 2009, Barcelona. SEMNI (2009)

    Google Scholar 

  • de Vries, G., Hillen, T., Lewis, M., Müller, J., Schönfisch, B.: A course in mathematical biology: Quantitative modeling with mathematical and computational methods. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  • Sachdev, P.L.: Nonlinear diffusive waves. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  • Tranquillo, R.T., Murray, J.D.: Continuum model of fibroblast-driven wound contraction inflammation-mediation. Journal of Theoretical Biology 158(2), 135–172 (1992)

    Article  Google Scholar 

  • Pettet, G.J., Byrne, H.M., McElwain, D.L.S., Norbury, J.: A model of wound healing angiogenesis in soft tissue. Mathematical Biosciences 136, 35–63 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Vermolen, F.J., Javierre, E. (2009). A Suite of Continuum Models for Different Aspects in Wound Healing. In: Gefen, A. (eds) Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00534-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00534-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00533-6

  • Online ISBN: 978-3-642-00534-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics