Skip to main content

Mechanobiology of Cutaneous Wound Healing and Scarring

  • Chapter
Bioengineering Research of Chronic Wounds

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 1))

Abstract

Mechanical forces are related to cutaneous wound dealing. A better understanding of the mechanobiological environment of skin will be helpful in designing new skin expansion and wound healing therapies. Mechanical forces are also related to cutaneous scarring. Scar formation follows the normal injury repair process in skin. Control and regulation of extrinsic / intrinsic mechanical forces are important to reduce abnormal scarring (hypertrophic scar or keloid).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarabi, S., Bhatt, K.A., Shi, Y., Paterno, J., Chang, E.I., Loh, S.A., Holmes, J.W., Longaker, M.T., Yee, H., Gurtner, G.C.: Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 21, 3250–3261 (2007)

    Article  Google Scholar 

  2. Akaishi, S., Akimoto, M., Ogawa, R., Hyakusoku, H.: The relationship between keloid growth pattern and stretching tension: visual analysis using the finite element method. Ann. Plast. Surg. 60(4), 445–451 (2008)

    Article  Google Scholar 

  3. Akaishi, S., Ogawa, R., Hyakusoku, H.: Keloid and hypertrophic scar: neurogenic inflammation hypotheses. Med. Hypotheses 71(1), 32–38 (2008)

    Article  Google Scholar 

  4. Bender, A.E., Bender, D.A.: Body Surface Area. A Dictionary of Food and Nutrition. Oxford University Press, New York (1995)

    Google Scholar 

  5. Chin, M.S., Lancerotto, L., Helm, D., Dastouri, P., Prsa, M.J., Ottensmeyer, M., Akaishi, S., Orgill, D.P., Ogawa, R.: Analysis of Neuropeptides in Stretched Skin. Plast. Reconstructive Surg (in Press, 2009)

    Google Scholar 

  6. Couchman, J.R., Austria, M.R., Woods, A.: Fibronectin-cell interactions. J. Invest. Dermatol. 94(suppl. 6), S7–S14 (1990)

    Article  Google Scholar 

  7. Daya, M., Nair, V.: Traction-assisted dermatogenesis by serial intermittent skin tape application. Plast. Reconstr. Surg. 122(4), 1047–1054 (2008)

    Article  Google Scholar 

  8. Denda, M., Nakatani, M., Ikeyama, K., Tsutsumi, M., Denda, S.: Epidermal keratinocytes as the forefront of the sensory system. Exp. Dermatol. 16(3), 157–161 (2007)

    Article  Google Scholar 

  9. Elwood, E.T., Ingram, W.L., Carlson, G.W.: Pregnancy as a tissue expander in the repair of a massive ventral hernia. Ann. Plast. Surg. 45(4), 431–433 (2000)

    Article  Google Scholar 

  10. Gao, J.H., Ogawa, R., Hyakusoku, H., Lu, F., Hu, Z.Q., Jiang, P., Yang, L., Feng, C.: Reconstruction of the face and neck scar contractures using staged transfer of expanded "Super-thin flaps". Burns 33(6), 760–763 (2007)

    Article  Google Scholar 

  11. Giamarchi, A., Padilla, F., Crest, M., Honore, E., Delmas, P.: TRPP2: Ca2+-permeable cation channel and more. Cell. Mol. Biol. (Noisy-le-grand) 52(8), 105–114 (2006)

    Google Scholar 

  12. Gilbert, T.W., Stewart-Akers, A.M., Sydeski, J., Nguyen, T.D., Badylak, S.F., Woo, S.L.: Gene expression by fibroblasts seeded on small intestinal submucosa and subjected to cyclic stretching. Tissue Eng. 13(6), 1313–1323 (2007)

    Article  Google Scholar 

  13. Greene, A.K., Puder, M., Roy, R., Arsenault, D., Kwei, S., Moses, M.A., Orgill, D.P.: Microdeformational wound therapy: effects on angiogenesis and matrix metalloproteinases in chronic wounds of 3 debilitated patients. Ann. Plast. Surg. 56(4), 418–422 (2006)

    Article  Google Scholar 

  14. Hamill, O.P.: Twenty odd years of stretch-sensitive channels. Pflugers Arch. 453(3), 333–351 (2006)

    Article  Google Scholar 

  15. Hinz, B., Celetta, G., Tomasek, J.J., Gabbiani, G., Chaponnier, C.: Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell 12, 2730 (2001)

    Google Scholar 

  16. Inoue, R., Jensen, L.J., Shi, J., Morita, H., Nishida, M., Honda, A., Ito, Y.: Transient receptor potential channels in cardiovascular function and disease. Circ. Res. 99(2), 119–131 (2006)

    Article  Google Scholar 

  17. Jancso, N., Janxso-Gabor, A., Szolxsanyi, J.: Direct evidence for neurogenic inflammation and its prevention by denermation and by pre-treatment with capsaicin. Br. J. Pharmacol. 31, 138–151 (1967)

    Google Scholar 

  18. Kessler, D., Dethlefsen, S., Haase, I., Plomann, M., Hirche, F., Krieg, T., Eckes, B.: Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype. J. Biol. Chem. 276(39), 36575–36585 (2001)

    Article  Google Scholar 

  19. Lai, X.N., Wang, Z.G., Zhu, J.M., Wang, L.L.: Effect of substance P on gene expression of transforming growth factor beta-1 and its receptors in rat’s fibroblasts. Chin. J. Traumatol. 6(6), 350–354 (2003)

    Google Scholar 

  20. Lund, T., Onarheim, H., Reed, R.K.: Pathogenesis of edema formation in burn injuries. World J. Surg. 16(1), 2–9 (1992)

    Article  Google Scholar 

  21. Manders, E.K., Schenden, M.J., Furrey, J.A., Hetzler, P.T., Davis, T.S., Graham, W.P.: 3rd, Soft-tissue expansion: concepts and complications. Plast. Reconstr. Surg. 74(4), 493–507 (1984)

    Article  Google Scholar 

  22. Matthews, B.D., Overby, D.R., Mannix, R., Ingber, D.E.: Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell. Sci. 119(Pt 3), 508–518 (2006)

    Article  Google Scholar 

  23. Ogawa, R., Chin, M.S.: Animal models of keloids and hypertrophic scars. J. Burn. Care Res. 29(6), 1016–1017 (2008)

    Article  Google Scholar 

  24. Ogawa, R., Mitsuhashi, K., Hyakusoku, H., Miyashita, T.: Postoperative electron-beam irradiation therapy for keloids and hypertrophic scars: retrospective study of 147 cases followed for more than 18 months. Plast. Reconstr. Surg. 111(2), 547–553 (2003)

    Article  Google Scholar 

  25. Ogawa, R.: Keloid and hypertrophic scarring may result from a mechanoreceptor or mechanosensitive nociceptor disorder. Med. Hypotheses 71(4), 493–500 (2008)

    Article  Google Scholar 

  26. Parsons, M., Kessler, E., Laurent, G.J., Brown, R.A., Bishop, J.E.: Mechanical load enhances procollagen processing in dermal fibroblasts by regulating levels of procollagen C-proteinase. Exp. Cell. Res. 252(2), 319–331 (1999)

    Article  Google Scholar 

  27. Pietramaggiori, G., Liu, P., Scherer, S.S., Kaipainen, A., Prsa, M.J., Mayer, H., Newalder, J., Alperovich, M., Mentzer, S.J., Konerding, M.A., Huang, S., Ingber, D.E., Orgill, D.P.: Tensile forces stimulate vascular remodeling and epidermal cell proliferation in living skin. Ann. Surg. 246(5), 896–902 (2007)

    Article  Google Scholar 

  28. Pilcher, B.K., Wang, M., Qin, X.J., Parks, W.C., Senior, R.M., Welgus, H.G.: Role of matrix metalloproteinases and their inhibition in cutaneous wound healing and allergic contact hypersensitivity. Ann. N. Y. Acad. Sci. 878, 12–24 (1999)

    Article  Google Scholar 

  29. Riordan, C., Budny, P., Regan, P.: Pregnancy as an autologous tissue expander for closure of an abdominal-wall defect. Br. J. Plast. Surg. 56(1), 64–66 (2003)

    Article  Google Scholar 

  30. Saxena, V., Hwang, C.W., Huang, S., Eichbaum, Q., Ingber, D., Orgill, D.P.: Vacuum-assisted closure: microdeformations of wounds and cell proliferation. Plast. Reconstr. Surg. 114(5), 1086–1096 (2004) discussion 1097-8

    Article  Google Scholar 

  31. Saxena, V., Orgill, D., Kohane, I.: A set of genes previously implicated in the hypoxia response might be an important modulator in the rat ear tissue response to mechanical stretch. BMC Genomics 8, 430 (2007)

    Article  Google Scholar 

  32. Scherer, S.S., Pietramaggiori, G., Mathews, J.C., Prsa, M.J., Huang, S., Orgill, D.P.: The mechanism of action of the vacuum-assisted closure device. Plast. Reconstr. Surg. 122(3), 786–797 (2008)

    Article  Google Scholar 

  33. Silver, F.H., Siperko, L.M., Seehra, G.P.: Mechanobiology of force transduction in dermal tissue. Skin Res. Technol. 9(1), 3–23 (2003) (review)

    Article  Google Scholar 

  34. Stockbridge, L.L., French, A.S.: Stretch-activated cation channels in human fibroblasts. Biophys. J. 54(1), 187–190 (1988)

    Article  Google Scholar 

  35. Stolberg, S., McCloskey, K.E.: Can shear stress direct stem cell fate? Biotechnol. Prog. 25(1), 10–19 (2009)

    Article  Google Scholar 

  36. Wang, N., Butler, J.P., Ingber, D.E.: Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111), 1124–1127 (1993)

    Article  Google Scholar 

  37. Wu, Z., Wong, K., Glogauer, M., Ellen, R.P., McCulloch, C.A.: Regulation of stretch-activated intracellular calcium transients by actin filaments. Biochem. Biophys. Res. Commun. 261(2), 419–425 (1999)

    Article  Google Scholar 

  38. Zegarska, B., Lelinska, A., Tyrakowski, T.: Clinical and experimental aspects of cutaneous neurogenic inflammation. Pharmacol. Rep. 58(1), 13–21 (2006)

    Google Scholar 

  39. Zheng, Z., Lamotte, R.H., Grigg, P.: Comparison of responses to tensile and compressive stimuli in C-mechanosensitive nociceptors in rat hairy skin. Somatosens Mot. Res. 19(2), 109–113 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Ogawa, R., Orgill, D.P. (2009). Mechanobiology of Cutaneous Wound Healing and Scarring. In: Gefen, A. (eds) Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00534-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00534-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00533-6

  • Online ISBN: 978-3-642-00534-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics