Skip to main content

Regenerative Wound Healing via Biomaterials

  • Chapter
Bioengineering Research of Chronic Wounds

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 1))

Abstract

Regenerative tissue engineering has the potential to revolutionize reconstructive approaches by providing either prefabricated tissue or responsive biomaterials with patient-specific geometry. The question to ask is how regeneration and repair are controlled in vivo and if a responsive biomaterial system can drive these processes? Does the cellular control lie at the cell-biomaterial nano-interface and do we have the tools to study this? The chemical and structural parameters and molecular linkages of the extracellular matrix that contribute to the internal mechanics of the cell and regulate a remodeling of an implanted biomaterial at the nano-interface have to be identified. This chapter is focused on introducing this concept of nano-scale regulated tissue regeneration by identifying numerous parameters of the biomaterial scaffold and cells so that the cell remodels the biomaterial without the addition of any growth factors, or other regulatory molecules by being influenced by composition, intermolecular linkages, nanostructure, nanomechanics of the biomaterial, and the biological/ chemical/ mechanical balance at the cell-biomaterial interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J., Kaplan, D.L.: Silk-based biomaterials. Biomaterials 24, 401–416 (2003)

    Article  Google Scholar 

  2. Anderson, J.M., Hiltner, A., Wiggins, M., Schubert, M.A., Collier, T.O., Kao, W.J., Mathur, A.B.: Recent Advances in Biomedical Polyurethane Biostability and Biodegradation. Polymer International 46, 163–171 (1998)

    Article  Google Scholar 

  3. Badylak, S.: The extracellular matrix as a scaffold for tissue reconstruction. Cell and Developmental Biology 13, 377–383 (2002)

    Article  Google Scholar 

  4. Badylak, S.: Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transplant Immunology 12, 367–377 (2004)

    Article  Google Scholar 

  5. Badylak, S., Kokini, K., Tullius, B., Simmons-Byrd, A., Morff, R.: Morphologic study of small intestinal submucosa as a body wall repair device. Journal of Surgical Research 103, 190–202 (2002)

    Article  Google Scholar 

  6. Badylak, S., Kokini, K., Tullius, B., Whitson, B.: Strength over time of a resorbable bioscaffold for body wall repair in a dog model. Journal of Surgical Research 99, 282–287 (2001)

    Article  Google Scholar 

  7. Balaban, N.Q., Schwarz, U.S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalus, D., Safran, S., Bershadsky, A., Addadi, L., Geiger, B.: Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology 3, 466–472 (2001)

    Article  Google Scholar 

  8. Bos, K.J., Holmes, D.F., Meadows, R.S., Kadler, K.E., McLeod, D., Bishop, P.N.: Collagen fibril organization in mammalian vitreous by freeze etch/ rotary shadowing electron microscopy. Micron 32, 301–306 (2001)

    Article  Google Scholar 

  9. Butler, C.E., Navarro, F.A., Orgill, D.P.: Reduction of abdominal adhesions using composite collagen-GAG implants for ventral hernia repair. Journal of Biomedical Materials Research: Applied Biomaterials 58, 75–80 (2001)

    Article  Google Scholar 

  10. Chiarini, A., Petrini, P., Bozzini, S., Pra, I.D., Armato, U.: Silk fibroin/ poly(carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells. Biomaterials 24, 789–799 (2003)

    Article  Google Scholar 

  11. Danielson, K.G., Baribault, H., Holmes, D.F., Graham, H., Kadler, K., Iozzo, R.V.: Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. The Journal of Cell Biology 136(3), 729–743 (1997)

    Article  Google Scholar 

  12. Foschi, D., Corsi, F., Cellerino, P., Rizzi, A., Morandi, E., Trabucchi, E.: Angiogenic effects of suture biomaterials. An experimental study in rats. Eur. Surg. Research 33(1), 16–20 (2001)

    Article  Google Scholar 

  13. Gobin, A.S., Butler, C.E., Mathur, A.B.: Repair and regneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend. Tissue Engineering 12(12), 3383–3394 (2006)

    Article  Google Scholar 

  14. Gobin, A.S., Froude, V.E., Mathur, A.B.: Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J. Biomed. Mat. Res. 74A(3), 465–473 (2005)

    Article  Google Scholar 

  15. Gobin, A.S., West, J.L.: Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels. Biotechnology Progress 19(6), 1781–1785 (2003)

    Article  Google Scholar 

  16. Higgins, S.P., Solan, A.K., Niklason, L.E.: Effects of polyglycolic acid on porcine smooth muscle cell growth and differentiation. Journal of Biomedical Materials Research 67(1), 295–302 (2003)

    Article  Google Scholar 

  17. Horiuchi, K., Naito, I., Nakano, K., Nakatani, S., Nishida, K., Taguchi, T., Ohtsuka, A.: Three-dimensional ultrastructure of the brush border glycocalyx in the mouse small intestine: a high resolution scanning electron microscopic study. Archives of Histology and Cytology 68(1), 51–56 (2005)

    Article  Google Scholar 

  18. Inoue, S., Magoshi, J., Tanaka, T., Magoshi, Y., Becker, M.: Atomic force microscopy: Bombyx mori silk fibroin molecules and their higher order structure. Journal of polymer science B: Polymer Physics 38, 1436–1439 (2000)

    Article  Google Scholar 

  19. Inouye, K., Kurokawa, M., Nishikawa, S., Tsukada, M.: Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. J. Biochem. Biophys. Methods 37, 159–164 (1998)

    Article  Google Scholar 

  20. Iwasaki, S., Hosaka, Y., Iwasaki, T., Yamamoto, K., Nagayasu, A., Ueda, H., Kokai, Y., Takehana, K.: The modulation of collagen fibril assembly and its structure by decorin: An electron microscopic study. Archives of Histology and Cytology 71(1), 37–44 (2008)

    Article  Google Scholar 

  21. Kadler, K.: Matrix Loading: Assembly of extracellular matrix collagen fibrils during embryogenesis. Birth Defects Research (Part C) 72, 1–11 (2004)

    Article  Google Scholar 

  22. Kaplan, D., Adams, W., Farmer, B., Viney, C. (eds.): Silk Polymers Materials Science and Biotechnology. American Chemical Society, Washington (1994)

    Google Scholar 

  23. Li, J., Ogiso, M., Minoura, N.: Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24, 357–365 (2003)

    Article  Google Scholar 

  24. Mathur, A.B., Collinsworth, A.M., Reichert, W.M., Kraus, W.E., Truskey, G.A.: Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. Journal of Biomechanics 34(12), 1545–1553 (2001)

    Article  Google Scholar 

  25. Mathur, A.B., Reichert, W.M., Truskey, G.A.: Flow and high affinity binding affect the elastic modulus of the nucleus, cell body, and the stress fibers of endothelial cells. Annals of Biomedical Engineering 35(7), 1120–1130 (2007)

    Article  Google Scholar 

  26. Mathur, A.B., Tonelli, A.E., Rathke, T., Hudson, S.: The dissolution and characterization of bombyx mori silk fibroin in calcium nitrate-methanol solution and the regeneration of films. Biopolymers 42, 61–74 (1997)

    Article  Google Scholar 

  27. Mathur, A.B., Truskey, G.A., Reichert, W.M.: Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophysical Journal 78(4), 1725–1735 (2000)

    Article  Google Scholar 

  28. Matthews, B.D., Pratt, B.L., Pollinger, H.S., Backus, C.L., Kercher, K.W., Sing, R.F., Heniford, B.T.: Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh. Journal of Surgical Research 114, 126–132 (2003)

    Article  Google Scholar 

  29. Miller, L., Putthanarat, S., Eby, R., Adams, W.: Investigation of the nanofibrillar morphology of silk fibers by small angle x-ray scattering and atomic force microscopy. International Journal of Biological Macromolecules 24, 159–165 (1999)

    Article  Google Scholar 

  30. Minoura, N., Aiba, S., Gotoh, Y., Tsukada, M., Imai, Y.: Attachment and growth of cultured fibroblast cells on silk protein matrices. Journal of biomedical materials research 29, 1215–1221 (1995)

    Article  Google Scholar 

  31. Miranti, C.K., Brugge, J.S.: Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biology 4(4), E83–E90 (2002)

    Article  Google Scholar 

  32. Morita, Y., Tomita, N., Aoki, H., Wakitani, S., Tamada, Y., Suguro, T., Ikeuchi, K.: Visco-elastic properteis of cartilage tissue regenerated wtih fibroin sponge. Bio-Medical Materials and Engineering 12, 291–298 (2002)

    Google Scholar 

  33. Panilaitis, B., Altman, G., Chen, J., Jin, H.-J., Karageorgiou, V., Kaplan, D.: Macrophage response to silk. Biomaterials 24, 3079–3085 (2003)

    Article  Google Scholar 

  34. Pesen, D., Hoh, J.H.: Micromechanical architecture of the endothelial cell cortex. Biophysical Journal 88, 670–679 (2005)

    Article  Google Scholar 

  35. Rao, S., Sharma, C.: Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. Journal of biomedical materials research 34(1), 21–28 (1997)

    Article  Google Scholar 

  36. Rios, C.N., Skoracki, R.J., Miller, M.J., Satterfield, W.C., Mathur, A.B.: In vivo bone formation in silk fibroin and chitosan blend scaffolds via ectopically grafted periosteum as a cell source: a pilot study. Tissue Engineering (February 2009) (in Press)

    Google Scholar 

  37. Santin, M., Motta, A., Freddi, G., Cannas, M.: In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382–389 (1999)

    Article  Google Scholar 

  38. Scott, J.E.: The first and second ’laws’ of chemical morphology, exemplified in mammalian extracellular matrices. European Journal of Histochemistry 46, 111–124 (2002)

    Google Scholar 

  39. Scott, J.E.: Elasticity in extracellular matrix ’shape modules’ of tendon, cartilage, etc. A sliding proteoglycan-filament model. Journal of Physiology 553(Pt 2), 335–343 (2003)

    Article  Google Scholar 

  40. Scott, J.E., Dyne, K.M., Thomlinson, A.M., Ritchie, M., Bateman, J., Cetta, G., Valli, M.: Human cells unable to express decoron produced disorganized extracellular matrix lacking "shape modules" (interfibrillar proteoglycan bridges). Experimental Cell Research 243, 59–66 (1998)

    Article  Google Scholar 

  41. Scott, J.E., Parry, D.A.D.: Control of collagen fibril diameters in tissues. International Journal of Biological Macromolecules 14, 1–2 (1992)

    Article  Google Scholar 

  42. Sofia, S., McCarthy, M., Gronowicz, G., Kaplan, D.: Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research 54, 139–148 (2001)

    Article  Google Scholar 

  43. Squire, J.M., Chew, M., Nneji, G., Neal, C., Barry, J., Michel, C.: Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering. Journal of Structural Biology 136, 239–255 (2001)

    Article  Google Scholar 

  44. Sugihara, A., Sugiura, K., Morita, H., Ninagawa, T., Tubouchi, K., Tobe, R., Izumiya, M., Horio, T., Abraham, N., Ikehara, S.: Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds. P.S. E. B. M. 225, 58–64 (2000)

    Google Scholar 

  45. Tomihata, K., Ikada, Y.: In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7), 567–575 (1997)

    Article  Google Scholar 

  46. Ushiki, T.: Collagen fibers, reticular fibers, and elastic fibers. A comprehensive understanding from a morphological viewpoint. Archives of Histology and Cytology 65(2), 109–126 (2002)

    Article  Google Scholar 

  47. Vink, H., Duling, B.R.: Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes iwthin mammalian capillaries. Circulation Research 79, 581–589 (1996)

    Google Scholar 

  48. Vogel, V., Baneyx, G.: The tissue engineering puzzle: a molecular perspective. Annual Review in Biomedical Engineering 5, 441–463 (2003)

    Article  Google Scholar 

  49. Walpita, D., Hay, E.: Studying actin-dependent processes in tissue culture. Nature Reviews 3, 137–141 (2002)

    Google Scholar 

  50. Weinbaum, S., Zhang, X., Han, Y., Vink, H., Cowin, S.C.: Mechanotransduction and flow across the endothelial glycocalyx. Proceedings of the National Academy of Sciences 100(13), 7988–7995 (2003)

    Article  Google Scholar 

  51. Weis, S.M., Zimmerman, S.D., Shah, M., Covell, J.W., Omens, J.H., Ross, J.J., Dalton, N., Jones, Y., Reed, C.C., Iozzo, R.V., McCulloch, A.D.: A role for decorin in the remodeling of myocardial infarction. Matrix Biology 24(4), 313–324 (2005)

    Article  Google Scholar 

  52. Woods, A., Smith, C.G., Rees, D.A., Wilson, G.: Stages in specialization of fibroblast adhesion and deposition of extracellular matrix. European Journal of Cell Biology 32(1), 108–116 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Mathur, A.B. (2009). Regenerative Wound Healing via Biomaterials. In: Gefen, A. (eds) Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00534-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00534-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00533-6

  • Online ISBN: 978-3-642-00534-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics