Skip to main content

Optical Non-invasive Characterization of Chronic Wounds

  • Chapter
Bioengineering Research of Chronic Wounds

Abstract

The health burden of chronic wounds is increasing at an alarming rate corresponding to the increase in the elderly and diabetic population. It is estimated that approximately 1% of the total health care costs in the western world are likely to be used for the management of chronic leg ulcers. This chapter reviews the optical methodologies that have been used mostly in a pre-clinical, research setting for the characterization of chronic wounds. Chronic wounds include diabetic foot ulcers, venous leg ulcers and pressure ulcers that do not heal within 4 weeks. The technologies covered include:

a) Optical coherence tomography (OCT) for structural imaging of wound tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrozy, E., Waczulikova, I., et al.: Microcirculation in mixed arterial/venous ulcers and the surrounding skin: clinical study using a laser Doppler perfusion imager and capillary microscopy. Wound repair and regeneration 17(1), 19 (2009)

    Article  Google Scholar 

  • Armstrong, D.G., Lavery, L.A., et al.: Infrared dermal thermometry for the high-risk diabetic foot. Physical Therapy 77(2), 169 (1997)

    Google Scholar 

  • Bagavathiappan, S., Saravanan, T., et al.: Investigation of peripheral vascular disorders using thermal imaging. The British Journal of Diabetes & Vascular Disease 8(2), 102 (2008)

    Article  Google Scholar 

  • Beckert, S., Witte, M.B., et al.: The Impact of the Micro-Lightguide O2C for the Quantification of Tissue Ischemia in Diabetic Foot Ulcers. Diabetes Care 27(12), 2863–2867 (2004)

    Article  Google Scholar 

  • Christ, F., Bauer, A., et al.: Different optical methods for clinical monitoring of the microcirculation. Eur. Surg. Res. 34, 145–151 (2002)

    Article  Google Scholar 

  • Cobb, M.J., Chen, Y., et al.: Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography. Journal of Biomedical Optics 11, 064002 (2006)

    Google Scholar 

  • Cross, K.M., Leonardi, L., et al.: Clinical utilization of near-infrared spectroscopy devices for burn depth assessment. Wound Repair & Regeneration 15(3), 332 (2007)

    Article  Google Scholar 

  • Fauci, M.A., Breiter, R., et al.: Medical infrared imaging–differentiating facts from fiction, and the impact of high precision quantum well infrared photodetector camera systems, and other factors, in its reemergence. Infrared Physics and Technology 42(3-5), 337–344 (2001)

    Article  Google Scholar 

  • Gambichler, T., Moussa, G., et al.: Applications of optical coherence tomography in dermatology. Journal of Dermatological Science 40(2), 85–94 (2005)

    Article  Google Scholar 

  • Gillies, R., Freeman, J.E., et al.: Systemic effects of shock and resuscitation monitored by visible hyperspectral imaging. Diabetes Technology & Therapeutics 5(5), 847–855 (2003)

    Article  Google Scholar 

  • Goldman, R.J., Salcido, R.: More than One Way to Measure a Wound: An Overview of Tools and Techniques. Advances in Skin & Wound Care 15(5), 236–243 (2002)

    Article  Google Scholar 

  • Greenman, R.L., Panasyuk, S., et al.: Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. The Lancet 366(9498), 1711–1717 (2005)

    Article  Google Scholar 

  • Groner, W., Winkelman, J.W., et al.: Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nature Medicine 5, 1209–1213 (1999)

    Article  Google Scholar 

  • Gschwandtner, M.E., Ambrozy, E., et al.: Microcirculation in venous ulcers and the surrounding skin: findings with capillary microscopy and a laser Doppler imager. European Journal of Clinical Investigation 29(8), 708 (1999)

    Article  Google Scholar 

  • Gschwandtner, M.E., Ambrózy, E., et al.: Microcirculation is similar in ischemic and venous ulcers. Microvascular Research 62(3), 226–235 (2001)

    Article  Google Scholar 

  • Gschwandtner, M.E., Ambrózy, E., et al.: Laser Doppler imaging and capillary microscopy in ischemic ulcers. Atherosclerosis 142(1), 225–232 (1999)

    Article  Google Scholar 

  • Harding, J.R., Wertheim, D.F., et al.: Infrared imaging in diabetic foot ulceration. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China (1998)

    Google Scholar 

  • Humeau, A., Steenbergen, W., et al.: Laser Doppler perfusion monitoring and imaging: novel approaches. Medical and Biological Engineering and Computing 45(5), 421–435 (2007)

    Article  Google Scholar 

  • Jessup, R.L.: What is the Best Method for Assessing the Rate of Wound Healing?: A Comparison of 3 Mathematical Formulas. Advances in Skin Wound Care 19(3), 138–146 (2006)

    Article  Google Scholar 

  • Jones, B.F.: A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Transactions on Medical Imaging 17(6), 1019–1027 (1998)

    Article  Google Scholar 

  • Jones, B.F., Plassmann, P.: Digital infrared thermal imaging of human skin. IEEE Engineering in Medicine and Biology Magazine 21(6), 41–48 (2002)

    Article  Google Scholar 

  • Jünger, M., Klyscz, T., et al.: Disturbed blood flow regulation in venous leg ulcers. Int. J. Microcirc. 16, 259–265 (1996)

    Article  Google Scholar 

  • Khan, F., Newton, D.J.: Laser Doppler Imaging in the Investigation of Lower Limb Wounds. The International Journal of Lower Extremity Wounds 2(2), 74 (2003)

    Article  Google Scholar 

  • Khaodhiar, L., Dinh, T., et al.: The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care 30(4), 903–910 (2007)

    Article  Google Scholar 

  • Langer, S., Born, F., et al.: Orthogonal Polarization Spectral Imaging Versus Intravital Fluorescent Microscopy for Microvascular Studies in Wounds. Annals of Plastic Surgery 48(6), 646 (2002)

    Article  Google Scholar 

  • Levasseur, M., Leonardi, L., et al.: Near infrared hyperspectral imaging: the road traveled to a clinical burn application. In: Proc. SPIE, vol. 5969, 59691O1-9 (2005)

    Google Scholar 

  • Margolis, D.J., Allen-Taylor, L., et al.: Diabetic Neuropathic Foot Ulcers: The association of wound size, wound duration, and wound grade on healing. Diabetes Care 25(10), 1835 (2002)

    Article  Google Scholar 

  • Martinez, L.: A Non-Invasive Spectral Reflectance Method for Mapping Blood Oxygen Saturation in Wounds. In: Proceedings of the 31st Applied Imagery Pattern Recognition Workshop (2002)

    Google Scholar 

  • Milner, S.M., Bhat, S., et al.: Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging. Burns 31(3), 316–319 (2005)

    Article  Google Scholar 

  • Mlacak, B., Blinc, A., et al.: Microcirculation disturbances in patients with venous ulcer before and after healing as assessed by laser Doppler flux-metry. Archives of Medical Research 36(5), 480–484 (2005)

    Article  Google Scholar 

  • Mourant, J.R., Bigio, I.J.: Elastic-scattering spectroscopy and diffuse reflectance. In: Vo-Dinh, T. (ed.) Biomedical Photonics Handbook. CRC Press, Boca Raton (2003)

    Google Scholar 

  • Nelzen, O.: Leg ulcers: Economic aspects. Phlebology 15(3-4), 110–114 (2000)

    Article  Google Scholar 

  • Newman, P., Davis, N.H.: Thermography as a predictor of sacral pressure sores. Age and Ageing 10(1), 14–18 (1981)

    Article  Google Scholar 

  • Newton, D., Leese, G., et al.: Microvascular abnormalities in diabetic foot ulcers. The Diabetic Foot 4(3), 141–146 (2001)

    Google Scholar 

  • Oh, J.T., Lee, S.W., et al.: Quantification of the wound healing using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics 11, 041124 (2006)

    Article  Google Scholar 

  • Papazoglou, E.S., Neidrauer, M., et al.: Non-invasive assessment of diabetic foot ulcers with diffuse photon density wave methodology: A pilot human study. Journal of Biomedical Optics (2009) (accepted Pending Revision)

    Google Scholar 

  • Papazoglou, E.S., Weingarten, M.S., et al.: Assessment of diabetic foot ulcers with diffuse near infrared methodology. In: 8th IEEE International Conference on BioInformatics and BioEngineering (BIBE), Athens, Greece (2008)

    Google Scholar 

  • Papazoglou, E.S., Weingarten, M.S., et al.: Optical properties of wounds: diabetic versus healthy tissue. IEEE Transactions on Biomedical Engineering 53(6), 1047–1055 (2006)

    Article  Google Scholar 

  • Park, B.H., Saxer, C., et al.: In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics 6, 474 (2001)

    Article  Google Scholar 

  • Payette, J.R., Kohlenberg, E., et al.: Assessment of Skin Flaps Using Optically Based Methods for Measuring Blood Flow and Oxygenation. Plastic and Reconstructive Surgery 115(2), 539 (2005)

    Article  Google Scholar 

  • Pierce, M.C., Sheridan, R.L., et al.: Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns 30(6), 511–517 (2004)

    Article  Google Scholar 

  • Prahl, S.: Optical absorption of hemoglobin. Oregon Medical Laser Center, Portland, Oreg (1999), http://omlc.ogi.edu/spectra/hemoglobin/index.html (retrieved May 15, 2009)

  • Querry, M.R., Cary, P.G., et al.: Split-pulse laser method for measuring attenuation coefficients of transparent liquids: application to deionized filtered water in the visible region. Applied Optics 17(22), 3587–3592 (1978)

    Article  Google Scholar 

  • Rajan, V., Varghese, B., et al.: Review of methodological developments in laser Doppler flowmetry. Lasers in Medical Science 24(2), 269–283 (2009)

    Article  Google Scholar 

  • Rajbhandari, S.M.: Early identification of diabetic foot ulcers that may require intervention using the micro lightguide spectrophotometer. Diabetes Care 22(8), 1292–1295 (1999)

    Article  Google Scholar 

  • Samson, D.J., Lefevre, F., et al.: Wound-healing Technologies: Low-level Laser and Vacuum-assisted Closure. Evidence Report/Technology Assessment No. 111 (Prepared by the Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center, under Contract No. 290-02-0026) Agency for Healthcare Research and Quality, Rockville, MD (2004)

    Google Scholar 

  • Sayre, E.K., Kelechi, T.J., et al.: Sudden increase in skin temperature predicts venous ulcers: A case study. Journal of Vascular Nursing 25(3), 46–50 (2007)

    Article  Google Scholar 

  • Schmidt, W.D., Liebold, K., et al.: Contact-Free Spectroscopy of Leg Ulcers: Principle, Technique, and Calculation of Spectroscopic Wound Scores. Journal of Investigative Dermatology 116, 531–535 (2001)

    Article  Google Scholar 

  • Schmitt, J.M.: Optical coherence tomography (OCT): a review. IEEE Journal of selected topics in quantum electronics 5(4), 1205–1215 (1999)

    Article  Google Scholar 

  • Sibbald, R.G., Orsted, H.L., et al.: Best Practice Recommendations for Preparing the Wound Bed: Update 2006. Advances in Skin & Wound Care 20(7), 390–405 (2007)

    Article  Google Scholar 

  • Singer, A.J., Clark, R.A.F.: Cutaneous Wound Healing. New England Journal of Medicine 341(10), 738–746 (1999)

    Article  Google Scholar 

  • Singer, A.J., Wang, Z., et al.: Optical coherence tomography: a noninvasive method to assess wound reepithelialization. Academic Emergency Medicine 14(5), 387–391 (2007)

    Google Scholar 

  • Skyler, J.S., Oddo, C.: Diabetes trends in the USA. Diabetes Metab. Res. Rev. 18(3), S21–S26 (2002)

    Google Scholar 

  • Sowa, M.G., Leonardi, L., et al.: Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period. Burns 27(3), 241–249 (2001)

    Article  Google Scholar 

  • Srinivas, S.M., de Boer, J.F., et al.: Determination of burn depth by polarization-sensitive optical coherence tomography. Journal of Biomedical Optics 9, 207 (2004)

    Article  Google Scholar 

  • Stamatas, G.N., Kollias, N.: In vivo documentation of cutaneous inflammation using spectral imaging. Journal of Biomedical Optics 12, 051603 (2007)

    Article  Google Scholar 

  • Stamatas, G.N., Zmudzka, B.Z., et al.: Non-Invasive Measurements of Skin Pigmentation In Situ. Pigment Cell Research 17(6), 618 (2004)

    Article  Google Scholar 

  • Timar-Banu, O., Beauregard, H., et al.: Development of Noninvasive and Quantitative Methodologies for The Assessment of Chronic Ulcers and Scars in Humans. Wound Repair and Regeneration 9(2), 123–132 (2001)

    Article  Google Scholar 

  • Verhonick, P.J., Lewis, D.W., et al.: Thermography in the study of decubitus ulcers: preliminary report. Nursing Research 21(3), 233 (1972)

    Article  Google Scholar 

  • Virgini-Magalhães, C.E., Porto, C.L., et al.: Use of microcirculatory parameters to evaluate chronic venous insufficiency. Journal of Vascular Surgery 43(5), 1037–1044 (2006)

    Article  Google Scholar 

  • Vo-Dinh, T.: A hyperspectral imaging system for in vivo optical diagnostics. IEEE Engineering in Medicine and Biology Magazine 23(5), 40–49 (2004)

    Article  Google Scholar 

  • Wang, Z., Pan, H., et al.: Assessment of dermal wound repair after collagen implantation with optical coherence tomography. Tissue Engineering Part C: Methods 14(1), 35–45 (2008)

    Article  Google Scholar 

  • Wollina, U., Liebold, K., et al.: Biosurgery supports granulation and debridement in chronic wounds-clinical data and remittance spectroscopy measurement. International journal of dermatology 41(10), 635 (2002)

    Article  Google Scholar 

  • Yeong, E.K., Hsiao, T.C., et al.: Prediction of burn healing time using artificial neural networks and reflectance spectrometer. Burns 31(4), 415–420 (2005)

    Article  Google Scholar 

  • Zuzak, K.J., Perumanoor, T.J., et al.: A Multimodal Reflectance Hyperspectral Imaging System for Monitoring Wound Healing in Below Knee Amputations. In: IEEE Engineering in Medicine and Biology Workshop, Dallas, TX (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Neidrauer, M., Papazoglou, E.S. (2009). Optical Non-invasive Characterization of Chronic Wounds. In: Gefen, A. (eds) Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00534-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00534-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00533-6

  • Online ISBN: 978-3-642-00534-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics