Skip to main content

Proteomic Approaches for Studying the Phases of Wound Healing

  • Chapter

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 1))

Abstract

Proteome level information is necessary to understand the function of specific cell types and their roles in health and disease. Proteomics is a rapidly developing field with a wide range of applications in wound healing. The ability to use proteomics to assess the wound healing process would have many benefits, including earlier evidence of healing and better understanding of how different treatments affect the wound at the protein level. The basis of what is known about the chronic wound proteome is based on results from a broad collection of studies utilizing a number of different proteomic techniques on fluids and tissues from wounds with different etiologies. The identification of biomarkers associated with healing or delayed healing in chronic wounds could have great significance in the use of current treatments, as well as in the development of new therapeutic interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tyers, M., Mann, M.: From genomics to proteomics. Nature 422, 193–197 (2003)

    Article  Google Scholar 

  2. ENCODE. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146), 799–816 (2007)

    Google Scholar 

  3. Northrup, R.B., Connor, A.N.: Introduction. In: Neuman, M.R. (ed.) Introduction to Molecular Biology, Genomics and Proteomics for Biomedical Engineers, pp. 1–11. CRC Press Taylor and Francis Group, Boca Raton (2009)

    Google Scholar 

  4. Wagner, P.D., Srivastava, S.: The Promise of Proteomics: Biology, Applications, and Challenges. In: Srivastava, S. (ed.) Informatics in Proteomics, pp. 1–15. CRC Press Taylor and Francis Group, Boca Raton (2005)

    Google Scholar 

  5. Nanney, L.B., Caldwell, R.L., et al.: Novel approaches for understanding the mechanisms of wound repair. Journal of Investigative Dermatology Symposium Proceedings 11, 132–139 (2006)

    Article  Google Scholar 

  6. Wysocki, A.B.: Wound fluids and the pathogenesis of chronic wounds. J. WOCN 23, 283–290 (1996)

    Article  Google Scholar 

  7. Moseley, R., Hilton, J.R., et al.: Comparison of oxidative stress biomarker profiles between acute and chronic wound environments. Wound Repair Regen. 12, 419–429 (2004)

    Article  Google Scholar 

  8. James, T.J., Hughes, M.A., et al.: Simple biochemical markers to assess chronic wounds. Wound Repair Regen. 8, 264–269 (2008)

    Article  Google Scholar 

  9. Trengove, N.J., Langton, S.R., et al.: Biochemical analysis of wound fluid from nonhealing healing chronic leg ulcers. Wound Repair Regen. 4(2), 234–239 (1996)

    Article  Google Scholar 

  10. Northrup, R.B., Connor, A.N.: Some Instrumental Methods Used in Genomics, Proteomics, and Forensic Science. In: Neuman, M.R. (ed.) Introduction to Molecular Biology, Genomics and Proteomics for Biomedical Engineers, pp. 283–327. CRC Press Taylor and Francis Group, Boca Raton (2009)

    Google Scholar 

  11. Jaynes, C.D., Fries, K., Brogan, M., Karch, J.E., Baird, K., Edsberg, L.E.: Development of a protocol for biochemical analysis of wound fluids. Acute Care Perspectives 12(1), 11–15 (2003)

    Google Scholar 

  12. Grinnell, F., Ho, C.-H., Wysocki, A.: Degradation of fibronectin and vitronectin in chronic wound fluid: Analysis by cell blotting, immunoblotting, and cell adhesion assays. J. Invest. Dermatol. 98, 410–416 (1992)

    Article  Google Scholar 

  13. Moses, M.A., Marikovsky, J.W., et al.: Temporal study of the activity of matrix metalloproteinases and their endogenous inhibitors during healing. Journal of Cellular Biology 60, 379–386 (1996)

    Google Scholar 

  14. Schmidtchen, A.: Chronic ulcers: A method for sampling and analysis of wound fluid. Acta. Derm. Venereol. 79, 291–295 (1999)

    Article  Google Scholar 

  15. Rasik, A.M., Shukla, A.: Antioxidant status in delayed healing type of wounds. Int. J. Exp. Path. 81, 257–263 (2000)

    Article  Google Scholar 

  16. Chen, G., Beer, D.G.: Protein Expression Analysis. In: Srivastava, S. (ed.) Informatics in Proteomics, pp. 227–254. CRC Press Taylor and Francis Group, Boca Raton (2005)

    Google Scholar 

  17. Fernandez, M.L., Broadbent, G.K., et al.: Development of an enhanced proteomic method to detect prognostic and diagnostic markers of healing in chronic wound fluid. British Journal of Dermatology 158, 281–290 (2008)

    Google Scholar 

  18. Tarran, S.L.S., Craft, G.E., et al.: The use of proteomics to study wound healing: a preliminary study for forensic estimation of wound age. Medicine, Science, and the Law 47(2), 134–140 (2007)

    Article  Google Scholar 

  19. Oh, J.E., Krapfenbauer, K., Lubec, G.: Proteomic identification of collagens and related proteins in human fibroblasts. Amino Acids 27, 305–311 (2004)

    Article  Google Scholar 

  20. Volden, G., Thorsrud, A.K., et al.: Biochemical composition of suction blister fluid determined by high resolution multicomponent analysis (capillary gas chromatography-mass spectrometry and two-dimensional electrophoresis). The Journal of Investigative Dermatology 75, 421–424 (1980)

    Article  Google Scholar 

  21. Macdonald, N., Cumberbatch, M., et al.: Proteomic analysis of suction blister fluid isolated from human skin. Clinical and Experimental Dermatology 31, 445–448 (2006)

    Article  Google Scholar 

  22. Chojnacki, C., Steinsstraber, L., et al.: Proteome analysis of chronic wound fluids via MudPIT. In: 11th Annual Meeting on Surgical Research, Saar-brucken, Germany, Langenbeck’s Archives of Surgery, November 2007, vol. 392, pp. 769–838 (2007)

    Google Scholar 

  23. Pollins, A.C., Friedman, D.B., et al.: Proteomic investigation of human burn wounds by 2D-difference gel electrophoresis and mass spectrometry. Journal of Surgical Research 142, 143–152 (2007)

    Article  Google Scholar 

  24. Aggarwal, K., Choe, L.H., et al.: Shotgun proteomics using the iTRAQ isobaric tags. Briefings in Functional Genomics and Proteomics 5(2), 112–120 (2006)

    Article  Google Scholar 

  25. Trengove, N., Bielefeldt-Ohmann, H., et al.: Cytokine profiles of wound fluid from chronic leg ulcers. Wound Repair and Regeneration 2(3), 228 (1994)

    Google Scholar 

  26. Trengove, N.J., Bielefeldt-Ohmann, H., Stacey, M.C.: Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Rep. Reg. 8, 13–25 (2000)

    Article  Google Scholar 

  27. Barone, E.J., Yager, D.R., et al.: Interleukin-1alpha and collagenase activity are elevated in chronic wounds. Plastic and Reconstructive Surgery 102, 1023–1027 (1998)

    Article  Google Scholar 

  28. Harris, I.R., Yee, K.C., et al.: Cytokine and protease levels in healing and non-healing venous leg ulcers. Experimental Dermatology 4, 342–349 (1995)

    Article  Google Scholar 

  29. Aiba-Kojima, E., Tsuno, N.H., et al.: Characterization of wound drainage fluids as a source of soluble factors associated with wound healing: comparison with platelet-rich plasma and potential use in cell culture. Wound Rep. Regen. 15, 511–520 (2007)

    Article  Google Scholar 

  30. Nwomeh, B.C., Liang, H.-X., et al.: MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. Journal of Surgical Research 81, 189–195 (1999)

    Article  Google Scholar 

  31. Rayment, E.A., Upton, Z., Shooter, G.K.: Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. British Journal of Dermatology 158, 951–961 (2008)

    Article  Google Scholar 

  32. Yager, D.R., Zhang, L.-Y., et al.: Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J. Invest. Dermatol. 107, 743–748 (1996)

    Article  Google Scholar 

  33. Ladwig, G.P., Robson, M.C., et al.: Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing pressure ulcers. Wound Rep. Reg. 10, 26–37 (2002)

    Article  Google Scholar 

  34. Trengove, N.J., Stacey, M.C., et al.: Analysis of acute and chronic wound environments: the role of proteases and their inhibitors. Wound Rep. Reg. 7, 442–452 (1999)

    Article  Google Scholar 

  35. Bullen, E.C., Long, M.T.: Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds. J. Invest. Dermatol. 104, 236–240 (1995)

    Article  Google Scholar 

  36. Nwomeh, B.C., Liang, H.-X., et al.: Dynamics of the matrix metalloproteinases MMP-1 and MMP-8 in acute open human dermal wounds. Wound Rep. Reg. 6, 127–134 (1998)

    Article  Google Scholar 

  37. Cook, H., Stephns, P., et al.: Defective extracellular matrix reorganization by chronic wound fibroblasts is associated with alterations in TIMP-1, TIMP-2, and MMP-2 activity. J. Invest. Dermatol. 115, 225–233 (2000)

    Article  Google Scholar 

  38. Lobmann, R., Ambrosch, A., et al.: Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 45, 1011–1016 (2002)

    Article  Google Scholar 

  39. Mouës, C.M., van Toorenenbergen, A.W., et al.: The role of topical negative pressure in wound repair: Expression of biochemical markers in wound fluid during wound healing. Wound Rep. Reg. 16, 488–494 (2008)

    Article  Google Scholar 

  40. Kilpadi, D.V., Stechmiller, J.K., et al.: Composition of wound fluid from pressure ulcers treated with negative pressure wound therapy using V.A.C. therapy in home health or extended vare patients: A pilot study. Wounds 18(5), 119–126 (2006)

    Google Scholar 

  41. Baker, E.A., Leaper, D.J.: Profiles of matrix metalloproteinases and their tissue inhibitors in intraperitoneal drainage fluid: Relationship to wound healing. Wound Rep. Reg. 11, 268–274 (2003)

    Article  Google Scholar 

  42. Baker, E.A., Leaper, D.J.: Proteinases, their inhibitors, and cytokine profiles in acute wound fluid. Wound Rep. Reg. 8, 392–398 (2000)

    Article  Google Scholar 

  43. Galkowski, H., Wojewodzka, U., et al.: Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regeneration 14, 558–565 (2006)

    Article  Google Scholar 

  44. Stojadinovic, O., Brem, H., et al.: Molecular pathogenesis of chronic wounds. American Journal of Pathology 167, 59–69 (2005)

    Google Scholar 

  45. Leber, T.M., Balkwill, F.R.: Zymography: A single-step staining method for quantitation of proteolytic activity on substrate gels. Anal. Biochem. 249(1), 24–28 (1997)

    Article  Google Scholar 

  46. Wysocki, A.B., Staiano-Coico, L., et al.: Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP2- and MMP-9. J. Invest. Dermatol. 101, 64–68 (1993)

    Article  Google Scholar 

  47. Wysocki, A.B., Kusakabe, A.O., et al.: Temporal expression of urokinase plasmi-nogen activator, plasminogen activator inhibitor and gelatinase-B in chronic wound fluid switches from a chronic to acute wound profile with progression to healing. Wound Rep. Reg. 7, 154–165 (1999)

    Article  Google Scholar 

  48. Brem, H., Stojadinovic, O., et al.: Molecular markers in patients with chronic wounds guide surgical debridement. Mol. Med. 13(1-2), 30–39 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Edsberg, L.E. (2009). Proteomic Approaches for Studying the Phases of Wound Healing. In: Gefen, A. (eds) Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00534-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00534-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00533-6

  • Online ISBN: 978-3-642-00534-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics