Data Fusion at Different Levels

  • Marcos Faundez-Zanuy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5398)


This paper summarizes the main characteristics of data fusion at different levels (sensor, features, scores and decisions). Although it is presented in the framework of biometric applications it is general for all the pattern recognition applications because this presentation is focused in the main blocks of a general pattern recognition system. Thus, the application in mind will imply a different sensor, feature extractor, classifier and decision maker but data fusion will be performed in a similar way.


Data Fusion Opinion Fusion Speaker Recognition Biometric System False Acceptance Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ho, T.K.: Multiple classifier combination: lessons and next steps. In: Bunke, H., Kandel, A. (eds.) Hybrid methods in pattern recognition. Machine perception and artificial intelligence, vol. 47, pp. 171–198. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  2. 2.
    Minsky, M.: logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI magazine 12, 34–51 (1991)Google Scholar
  3. 3.
    Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of multibiometrics. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Faundez-Zanuy, M.: Biometric security technology. IEEE Aerospace and Electronic Systems Magazine 21(6), 15–26 (2006)CrossRefGoogle Scholar
  5. 5.
    Faundez-Zanuy, M., Monte-Moreno, E.: State-of-the-art in speaker recognition. IEEE Aerospace and Electronic Systems Magazine 20(5), 7–12 (2005)CrossRefGoogle Scholar
  6. 6.
    Faundez-Zanuy, M.: Data fusion in biometrics. IEEE Aerospace and Electronic Systems Magazine 20(1), 34–38 (2005)CrossRefGoogle Scholar
  7. 7.
    Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. On Pattern analysis and machine intelligence 16(1), 66–75 (1994)CrossRefGoogle Scholar
  8. 8.
    Willems, M., Forret, P.: Layered Biometric Verification. White paper, Keyware Technologies (December 1997)Google Scholar
  9. 9.
    Monte-Moreno, E., Chetouani, M., Faundez-Zanuy, M., Sole-Casals, J.: Maximum likelihood Linear Programming Data Fusion for Speaker Recognition. Speech Communication. Elsevier, Amsterdam (in press), doi:10.1016/j.specom.2008.05.009Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marcos Faundez-Zanuy
    • 1
  1. 1.Escola Universitària Politècnica de MataróMATARÓ (BARCELONA)Spain

Personalised recommendations