Skip to main content

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 205))

Abstract

In the developing testis, fetal Leydig cells appear in mice at embryonic day 12.5, in rats at embryonic day 14.5, and in human at weeks 7–8 of pregnancy (Huhtaniemi and Pelliniemi 1992; Pelliniemi et al. 1996; Majdic et al. 1998; Yao and Barsoum 2007). The fetal Leydig cells form clusters that are surrounded by a basal lamina that becomes discontinuous after birth (Kuopio and Pelliniemi 1989; Kuopio et al. 1989a). According to O’Shaugnessy et al. (2006) and Yao and Barsoum (2007), the first visible Leydig cells could be recognized by staining for 3β-hydroxysteroid dehydrogenase or cytochrome P450 side chain cleavage enzyme (CytP450scc) at 12.5 days post coitus (dpc). This occurs after the formation of the testicular cords and the coelomic vessel. At this time, it is not clear whether the first Leydig cells transdifferentiate directly from their stem/progenitors within the gonadal mesenchyme or via stem/progenitor Leydig cells (pericytes) in the testicular vasculature. After initial differentiation and proliferation of fetal Leydig cells around day 12 of gestation (Gondos 1980), the fetal Leydig cell population remains virtually unchanged in mice, and, for example, the number of Leydig cells is stable between day 16 of gestation and day 5 after birth (Baker and O’Shaughnessy 2001a). This suggests that the fetal Leydig cells are terminally differentiated and do not divide (Zhang et al. 2008). However, there are also reports indicating that the number of fetal Leydig cells increases between embryonic days 17 and 21 or immediately before birth (Kerr et al. 1988). The latter would not be compatible with the idea that fetal Leydig cells arise by transdifferentiation from stem/progenitor Leydig cells in analogy with the adult Leydig cell population. After birth, the number of fetal Leydig cells significantly decreases. In contrast, Kerr and Knell (1988) proposed that 50–75% of the original “fetal-type” Leydig cell population present at birth persists in the adult testis. In this context, observations (Davidoff et al. 2004) that “fetal-type” Leydig cells are generated during postnatal development are significant, since these cells could be hardly distinguished from the prenatal fetal Leydig cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  PubMed  CAS  Google Scholar 

  • Angelova P, Davidoff MS, Kanchev L (1991a) Substance P-induced inhibiting of Leydig cell steroidogenesis in primary culture. Andrologia 23:325–327

    Article  PubMed  CAS  Google Scholar 

  • Ariyaratne HB, Mendis-Handagama SMLC, Hales DB, Mason JI (2000a) Studies on the onset of Leydig precursor cell differentiation in the prepubertal rat testis. Biol Reprod 63:165-171

    Article  CAS  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions Circ Res 97:512–523

    CAS  Google Scholar 

  • Belachew S, Chittajallu R, Aguierre AA, Yuan X, Kirby M, Anderson S, Gallo V (2003) Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161:169–186

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kalcheim C (2008) Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle. J Cell Biol 180:607–618

    Article  PubMed  CAS  Google Scholar 

  • Bergwerff M, Verberene ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (1998) Neural crest cell contribution to the developing circulatory system. Implications for vascular morphology? Circ Res 82:221–231

    PubMed  CAS  Google Scholar 

  • Billon N, Innarelli P, Monteiro MC, Glavieux-Pardanaud C, Richardson WD, Kessaris N, Dani C, Dupin E (2007) The generation of adipocytes by the neural crest. Development 134:2283–2292

    Article  PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Christ B (2000) Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol 48:1–42

    Article  PubMed  CAS  Google Scholar 

  • Brennan J, Capel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Gen 5:509-521

    Article  CAS  Google Scholar 

  • Brennan J, Karl J, Capel B (2002) Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev Biol 244:418–428

    Article  PubMed  CAS  Google Scholar 

  • Brennan J, Tilmannn C, Capel B (2003) Pdgfr- a mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17:800–810

    Article  PubMed  CAS  Google Scholar 

  • Britsch S, Li L, Kirchhoff S, Theuring F, Brinkmann V, Birchmeier C, Riethmacher D (1998) The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 12:1825–1836

    Article  PubMed  CAS  Google Scholar 

  • Buehr M, Gu S, McLaren A (1993) Mesonephric contribution to testis differentiation in the fetal mouse, Development 117:273–281

    PubMed  CAS  Google Scholar 

  • Calloni GW, Glavieux-Pardanaud C, Le Douarin NM, Dupin E (2007) Sonic hedgehog promotes the development of multipotent neural crest progenitors endowed with both mesenchymal and neural potentials. Proc Natl Acad Sci USA 104:19879–19884

    Article  PubMed  CAS  Google Scholar 

  • Campa VM, Gutierez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Bracova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes . J Cell Biol 183:129–141

    Article  PubMed  CAS  Google Scholar 

  • Capel B, Albrecht KH, Washburn LL, Eicher EM (1999) Migration of mesonephric cells into mammalian gonad depends on Sry. Mech Dev 84:127–131

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Gen 4:710–720

    CAS  Google Scholar 

  • Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200

    Article  PubMed  CAS  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    PubMed  CAS  Google Scholar 

  • Chemes HE (1996) Leydig cell development in humans. In: Payne AH, Hardy MP, Russel LD (eds) The Leydig cell. Cache River, Vienna, pp 175–201

    Google Scholar 

  • Christ B, Huang R, Scaal M (2004) Formation and differentiation of the avian somite. Anat Embryol 208:333–350

    Article  PubMed  Google Scholar 

  • Clark AM, Garland KK, Russell LD (2000) Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 63:1825–1838

    Article  PubMed  CAS  Google Scholar 

  • Collesi C, Zentlin L, Sinagra G, Giacca M (2008) Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol 183:117–128

    Article  PubMed  CAS  Google Scholar 

  • Condorelli G, Borello U, De Angelis L, Latronico M, Sirabella D, Coletta M, Galli R, Balconi G, Follenzi A, Frati G, Cusella de Angelis MG, Gioglio L, Amuchastegui S, Adorini L, Naldini L, Vescovi A, Decana E, Cossu G (2001) Cardiomyocytes induce endothelial cells to transdifferentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA 98:10733–10738

    Article  PubMed  CAS  Google Scholar 

  • Cool J, Carmona FD, Szucsik JC, Capel B (2008) Peritubular myoid cells are not the migrating population required for testis cord formation in the XY gonad. Sex Dev 2:128–133

    Article  PubMed  CAS  Google Scholar 

  • Cossu G, Bianco P (2003) Mesoangioblasts - vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 13:537–542

    Article  PubMed  CAS  Google Scholar 

  • Covas DT, Panepussi RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MCC, Neder L, Santos ARD, Peres LC, Jamur MC, Zago MA (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36:642–654

    Article  PubMed  CAS  Google Scholar 

  • Coveney D, Cool J, Capel B (2008) Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc Natl Acad Sci USA 105:7212–7217

    Article  PubMed  CAS  Google Scholar 

  • Coyne TM, Marcus AJ, Woodbury D, Black IB (2006) Marrow stromal cells transplanted to the adult brain are rejected by an inflamatory response and transfer donor labels to host neurons and glia. Stem Cells 24:2483–2492

    Article  PubMed  Google Scholar 

  • Crane JF, Trainor PA (2006) Neural crest stem and progenitor cells. Annu Rev Cell Dev Biol 22:267–286

    Article  PubMed  CAS  Google Scholar 

  • Cui S, Schwartz L, Qiaggin SE (2003) Pod1 is required in stromal cells for glomerulogenesis. Dev Dyn 226:512–522

    Article  PubMed  CAS  Google Scholar 

  • Cui S, Ross A, Stallings N, Parker KL, Capel B, Quaggin SE (2004) Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development 131:4095–4105

    Article  PubMed  CAS  Google Scholar 

  • Cumano A, Godin I (2007) Ontogeny of the hematopoietic system. Annu Rev Immunol 25:745–785

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with the CNS progenitor cell state in many, but not all, regions of developing CNS. Dev Brain Res 84:109–129

    Article  CAS  Google Scholar 

  • da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  PubMed  CAS  Google Scholar 

  • da Silva Meirelles L, Caplan AI, Nardi NB (2008) In serch of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Article  PubMed  Google Scholar 

  • Davidoff MS, Schulze W, Middendorff R, Holstein AF (1993) The Leydig cell of the human testis - a new member of the diffuse neuroendocrine system. Cell Tissue Res 271:429–439

    Article  PubMed  CAS  Google Scholar 

  • Davidoff MS, Middendorff R, Mayer B, Holstein AF (1995) Nitric oxide synthase (NOS-1) in Leydig cells of the human testis. Arch Histol Cytol 58:17–30

    Article  PubMed  CAS  Google Scholar 

  • Davidoff MS, Middendorff R, Kofuncu E, Muller D, Ježek D, Holstein AF (2002) Leydig cells of the human testis possess astrocyte and olygodendrocyte marker molecules. Acta Histochem 104:39–49

    Article  PubMed  CAS  Google Scholar 

  • Davidoff MS, Middendorff R, Enikolopov G, Riethmacher D, Holstein AF, Muller D (2004) Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 167:935–944

    Article  PubMed  CAS  Google Scholar 

  • De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–877

    Article  PubMed  CAS  Google Scholar 

  • Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Pearni L, Innocenzi A, Galvez BG, Messina G, Morosseti R, Sheng Li, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Gossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267

    Article  PubMed  CAS  Google Scholar 

  • DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberg-de Groot AC (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–451

    PubMed  CAS  Google Scholar 

  • Doetsch F (2003a) The glial identity of neural stem cells. Nature Neurosci 6:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999a) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Drusenheimer N, Wulf G, Nolte J, Lee JH, Dev A, Dressel R, Gromoll J, Schmidtke J, Engel W, Nayernia K (2007) Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl 63:69–76

    PubMed  CAS  Google Scholar 

  • Dupin E, Calloni G, Real C, Goncalves-Trentin A, Le Douarin NM (2007) Neural crest progenitor and stem cells. C R Biol 330:521–529

    Article  PubMed  CAS  Google Scholar 

  • Esner M, Meilhac SM, Relaix F, Nicolas J-F, Cossu G, Buckingam ME (2006) Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development 133:737–749

    Article  PubMed  CAS  Google Scholar 

  • Foster K, Sheridan J, Veiga-Fernandes H, Roderick K, Pachnis V, Adams R, Blackburn C, Kioussis D, Coles M (2008) Contribution of the neural crest-derived cells in the embryonic and adult thymus. J Immunol 180:3183–3189

    PubMed  CAS  Google Scholar 

  • Galli R, Borello U, Gritti A, Minasi MG, Bjornson C, Coletta M, Mora M, De Angilis MG, Fiocco R, Cossu G, Vescovi AL (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3:986–991

    Article  PubMed  CAS  Google Scholar 

  • Ge RS, Shan LX, Hardy MP (1996) Pubertal development of Leydig cells. In: Payne AH, Hardy MP, Russell LD (eds) The Leydig cell. Cache River, Vienna, pp 159–174

    Google Scholar 

  • Ge RS, Dong Q, Sottas CM, Chen H, Zirkin BR, Hardy MP (2005) Gene expression in rat Leydig cells during development from the progenitor to adult stage: a cluster analysis. Biol Reprod 72:1405–1415

    Article  PubMed  CAS  Google Scholar 

  • Ge RS, Dong Q, Sottas CM, Papadopoulos V, Zirkin BR, Hardy MP (2006) In search of rat stem Leydig cells: identification, isolation, and lineage-specific development. Proc Natl Acad Sci USA 103:2719–2724

    Article  PubMed  CAS  Google Scholar 

  • Gnessi L, Basciani S, Mariani S, Arizzi M, Spera G, Wang C, Bondjers C, Karlsson L, Betsholtz C (2000) Leydig cell loss and spermatogenetic arrest in platelet-derived growth factor (PDGF)-A-deficient mice. J. Cell Biol 149:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Godin IE, Garcia-Porrero JA, Coutinho A, Dieterlen-Lievre F, Marcos MAR (1993) Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364:67–70

    Article  PubMed  CAS  Google Scholar 

  • Gondos B (1980) Development and differentiation of the testis and male reproductive tract. In: Steinberger A, Steinberger E (eds) Testicular development structure and function. Raven, New York, pp 3–20

    Google Scholar 

  • Guan K, Wagner S, Unsold B, Maier LS, Kaiser D, Hemmerlein B, Nayernia K, Engel W, Hasenfuss G (2007) Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ Res 100:1615–1625

    Article  PubMed  CAS  Google Scholar 

  • Hardy MP, Zirkin BR, Ewing LL (1989) Kinetic studies on the development of the adult population of Leydig cells in testes of the pubertal rat. Endocrinol 124:762–770

    Article  CAS  Google Scholar 

  • Hatano O, Takakusu A, Nomura M, Morohashi K (1996) Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells 1:663–671

    Article  PubMed  CAS  Google Scholar 

  • Hatzopoulos AK, Folkman J, Vasile E, Eiselen GK, Rosenberg RD (1998) Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 125:1457–1468

    PubMed  CAS  Google Scholar 

  • He J, Wang Y, Li YL (2007) Fibroblast-like cells derived from gonadal ridges and dorsal mesenteries of human embryos as feeder cells for culture of human embryonic germ cells. J Biomed Sci 14:617–628

    Article  PubMed  CAS  Google Scholar 

  • Herzog EL, Chai L, Krause DS (2003) Plasticity of marrow-derived stem cells. Blood 102:3483–3493

    Article  PubMed  CAS  Google Scholar 

  • Howson KM, Aplin AC, Gelati M, Alessandri G, Parati EA, Nicosia RF (2005) The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. Am J Physiol Cell Physiol 289:C1396 – C1407

    Article  PubMed  CAS  Google Scholar 

  • Huhtaniemi I, Pelliniemi LJ (1992) Fetal Leydig cells: cellular origin, morphology, life span, and special functional features. Proc Soc Exp Biol Med 201:125–140

    PubMed  CAS  Google Scholar 

  • Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lievre F (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125:4575–4583

    PubMed  CAS  Google Scholar 

  • Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, Capel B, Swain A (2003) Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130:3663–3670

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Hansson EM, Tikka S, Lanner F, Sahlgren C, Farnebo F, Baumann M, Kalimo H, Lendahl U (2008) Notch signaling regulates platelet-derived growth factor receptor-s expression in vascular smooth muscle cells. Circ Res 102:1483–1491

    Article  PubMed  CAS  Google Scholar 

  • Joseph NM, Mukouyama Y-s, Mosher JT, Jaegle M, Crone SA, Dormand E-L, Lee K-F, Meijer D, Anderson DJ, Morrison SJ (2004) Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131:5599–5612

    Article  PubMed  CAS  Google Scholar 

  • Josephson R, Muller T, Pickel J, Reynolds K, Turner PA, Zimmer A, McKay RDG (1998) POU transcription factors control expression of CNS stem cell-specific genes. Development 125:3087–3100

    PubMed  CAS  Google Scholar 

  • Karl J, Capel B (1998) Sertoli cells of the mouse testis originate from coelomic epithelium. Dev Biol 203:323–333

    Article  PubMed  CAS  Google Scholar 

  • Kerr JB, Knell CM (1988) The fate of fetal Leydig cells during the development of the fetal and postnatal rat testis. Development 103:535–544

    PubMed  CAS  Google Scholar 

  • Kerr JB, Risbridger GP, Knell CM (1988) Stimulation of interstitial cell growth after selective destruction of foetal Leydig cells in the testis of postnatal rats. Cell Tissue Res 252:89–98

    Article  PubMed  CAS  Google Scholar 

  • Keshet E, Lyman SD, Williams DE, Anderson DM, Jenkins NA, Copeland NG, Parada LF (1991) Embryonic RNA expression patterns of the c-kit receptor and cognate ligand suggest multiple functional roles in mouse development. EMBO J 10:2425–2435

    PubMed  CAS  Google Scholar 

  • Kobayashi A, Chang H, Chaboissier M-C, Schedl A, Behringer RR (2005) Sox9 in testis development. Ann N Y Acad Sci 1061:9–17

    Article  PubMed  CAS  Google Scholar 

  • Koopman P, Munsterberg A, Capel B, Vivian N, Lovell-Badge R (1990) Expression of a candidate sex-determining gene during mouse testis development. Nature 348:450–452

    Article  PubMed  CAS  Google Scholar 

  • Kopp HG, Hooper AT, Shmelkov SV, Rafii S (2007) Beta-galactosidase staining on bone marrow. The osteoclast pitfall. Histol Histopathol 22:971–976

    PubMed  CAS  Google Scholar 

  • Kubo H, Alitalo K (2003) The bloody fate of endothelial stem cells. Genes Dev 17:322–329

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA 100:6487–6492

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Machalinski B, Ratajczak MZ (2006a) The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp (Waes) 66:331–341

    Google Scholar 

  • Kucia M, Wu W, Ratajczak MZ (2007) Bone marrow-derived very small embryonic-like stem cells: their developmental origin and biological significance. Dev Dyn 236:3309–3320

    Article  PubMed  CAS  Google Scholar 

  • Kuopio T, Pelliniemi LJ (1989) Patchy basement membranes of rat Leydig cells shown by ultrastructural immunolabeling. Cell Tissue Res 256:45–51

    Article  PubMed  CAS  Google Scholar 

  • Kuopio T, Paranko J, Pelliniemi LJ (1989a) Basement membrane and epithelial features of fetal-type Leydig cells in rat and human testis. Differentiation 40:198–206

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov SA, Mankani MH, Leet AI, Ziran N, Gronthos S, Robey PG (2007) Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells 25:1830–1839

    Article  PubMed  CAS  Google Scholar 

  • Lai EC (2004) Notch signalling: control of cell communication and cell fate. Development 131:965–973

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin NM, Creuzet S, Couly G, Dupin E (2004) Neural crest cell plasticity and its limits. Development 131:4637–4650

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin NM, Brito JM, Creuzet S (2007) Role of neural crest in face and brain development . Brain Res Rev 55:237–242

    Article  PubMed  Google Scholar 

  • Le Douarin NM, Calloni GW, Dupin E (2008) The stem cells of the neural crest. Cell Cycle 7:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Lin G, Garcia M, Ning H, Banie L, Guo Y-L, Lue TF, Lin C-S (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17:1–12

    Article  CAS  Google Scholar 

  • Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C (1997a) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124:3943–3953

    PubMed  CAS  Google Scholar 

  • Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredricsson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840

    Article  PubMed  CAS  Google Scholar 

  • Lo KC, Lei Z, Rao CV, Beck J, Lamb DJ (2004) De novo testosterone production in luteinizing hormone receptor knockout mice after transplantation of Leydig stem cells. Endocrinology 145:4011–4015

    Article  PubMed  CAS  Google Scholar 

  • Lovell-Badge R, Robertson E (1990) XY female mice resulting from heritable mutation in the primary testis-determining gene, Tdy. Development 109:635–646

    CAS  Google Scholar 

  • Lue YH, Ekkila K, Liu PY, Ma K, Wang C, Hikim AS, Swerdloff RS (2007) Fate of bone marrow stem cells transplanted into the testis. Potential implication for men with testiuclar failure. Am J Pathol 170:899–908

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490

    Article  PubMed  CAS  Google Scholar 

  • Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arteroscler Thromb Vasc Biol 27:1248–1258

    Article  CAS  Google Scholar 

  • Majdic G, Saunders PTK, Teerds KJ (1998) Immunoexpression of the steroidogenic enzymes 3-beta hydroxysteroid dehydrogenase and 17 a -hydroxylase, C17,20 lyase and the receptor for luteinizing hormone (LH) in the fetal rat testis suggests that the onset of Leydig cell steroid production is independent of LH action. Biol Reprod 58:520–525

    Article  PubMed  CAS  Google Scholar 

  • Martineau J, Nordqvist K, Tilmann C, Lovell-Badge R, Capel B (1997) Male-specific cell migration into the developing gonad. Curr Biol 7:958–968

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Zsebo KM, Hogan BL (1990) Embryonic expression of a hematopoietic growth factor encoded by the S1 locus and the ligand for c-kit. Nature 347:667–669

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Tsuji K, Hisakawa H, Xu M-j, Ebihara Y, Ishi T, Sugiyama D, Manabe A, Tanaka R, Ikeda Y, Asano S, Nakahata T (2001) Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells. Blood 98:6–12

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer A, Seidl K, Lahr G, Bitter-Suermann D, Christoph A, Barthels D, Wille W, Gratzl M (1992) Leydig cells express neural cell adhesion molecules in vivo and in vitro. Biol Reprod 47:656–664

    Article  PubMed  CAS  Google Scholar 

  • Medvinsky AL, Samoylina NL, Muller AM, Dzierzak EA (1993) An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364:64–67

    Article  PubMed  CAS  Google Scholar 

  • Merchant-Larios H, Moreno-Mendoza N (1998) Mesonephric stromal cells differentiate into Leydig cells in the mouse fetal testis. Exp Cell Res 244:230–238

    Article  PubMed  CAS  Google Scholar 

  • Middendorff R, Davidoff MS, Holstein AF (1993) Neuroendocrine marker substances in human Leydig cells - changes by disturbances of testicular function. Andrologia 25:257–262

    Article  PubMed  CAS  Google Scholar 

  • Minasi MG, Riminucci M, De Angelis LC, Borello U, Berarducci B, Innocenzy A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta differentiates into most mesodermal tissues. Development 129:2773–2783

    PubMed  CAS  Google Scholar 

  • Molenaar R, Rommerts FF, van der Molen HJ (1986a) Non-specific esterase: a specific and useful marker enzyme for Leydig cells from mature rats. J Endocrinol 108:329–334

    Article  PubMed  CAS  Google Scholar 

  • Morohashi K (1997) The ontogenesis of the steroidogenic tissues. Genes Cells 2:95–106

    Article  PubMed  CAS  Google Scholar 

  • Mujtaba T, Mayer-Proschel M, Rao MS (1998) A common neural progenitor for CNS and PNS. Dev Biol 200:1–15

    Article  PubMed  CAS  Google Scholar 

  • Nadin BM, Goodell MA, Hirshi KK (2003) Phenotype and hematopoietic potential of side population cells throughout embryonic development. Blood 102:2436–2443

    Article  PubMed  CAS  Google Scholar 

  • Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W (2006) Derivation of male germ cells from bone marrow stem cells. Lab Invest 86:654–663

    Article  PubMed  CAS  Google Scholar 

  • Nef S, Schaad O, Stallings NR, Cederooth CR, Pitetti J-L, Schaer G, Malki S, Dubois-Dauphin M, Boizet-Bonhourse B, Descombes P, Parker KL, Vassalli J-D (2005) Gene expression during sex determination reveals a robust genetic program at the onset of ovarian development. Dev Biol 287:361–377

    Article  PubMed  CAS  Google Scholar 

  • Nikolova G, Lammert E (2003) Interdependent development of blood vessels and organs. Cell Tissue Res 314:33–42

    Article  PubMed  Google Scholar 

  • Nishino K, Yamanouchi K, Naito K, Tojo H (2001) Characterization of mesonephric cells that migrate into the XY gonad during differentiation. Exp Cell Res 267:225–232

    Article  PubMed  CAS  Google Scholar 

  • Nobuhisa I, Ohtsu N, Okada S, Nakagata N, Taga T (2007) Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures. Exp Cell Res 313:965–974

    Article  PubMed  CAS  Google Scholar 

  • Ohneda O, Fennie C, Zheng Z, Donahue C, La H, Villacorta R, Cairns B, Lasky LA (1998) Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92:908–919

    PubMed  CAS  Google Scholar 

  • Oishi K, Ogawa Y, Gamoh S, Uchida MK (2002) Contractile responses of smooth muscle cells differentiated from rat neural stem cells. J Physiol 540:139–152

    Article  PubMed  CAS  Google Scholar 

  • Oostendorp RA, Narvey KN, Kusadasi N, de Bruijn MFTR, Saris C, Ploemacher RE, Medvinsky AL, Dzierzak EA (2002) Stromal cell lines from mouse aorta-gonad-mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood 99:1183–1189

    Article  PubMed  CAS  Google Scholar 

  • Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Tong M, Jameson JL (2007) Distinct roles for steroidogenic factor 1 and desert hedgehog pathways in fetal and adult Leydig cell development. Endicrinology 148:3704–3710

    Article  CAS  Google Scholar 

  • Pelliniemi LJ, Kuopio T, Frojdman K (1996) The cell biology and function of the fetal Leydig cells. In: Payne AH, Hardy MP, Russell LD (eds) The Leydig cell. Cache River Press, Vienna, IL, pp 143–158

    Google Scholar 

  • Peng H, Huard J (2004) Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transplant Immunol 12:311–319

    Article  CAS  Google Scholar 

  • Pierret C, Spears K, Maruniak JA, Kirk MD (2006) Neural crest as the source of adult stem cells. Stem Cells Dev 15:286–291

    Article  PubMed  CAS  Google Scholar 

  • Pla P, Larue L (2003) Involvement of endothelin receptors in normal and pathological development of neural crest cells. Int J Dev Biol 47:315–325

    PubMed  CAS  Google Scholar 

  • Pla P, Moore R, Morali OG, Grille S, Martinozzi S, Delmas V, Larue L (2001) Cadherins in neural cell development and transformation. J Cell Physol 189:121–132

    Article  CAS  Google Scholar 

  • Pouget C, Gautier R, Teillet M-A, Jaffredo T (2006) Somite-derived cell replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133:1013–1022

    Article  PubMed  CAS  Google Scholar 

  • Pouget C, Pottin K, Jaffredo T (2008) Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. Dev Biol 315:437–447

    Article  PubMed  CAS  Google Scholar 

  • Rao M (2004a) Stem and precursor cells in the nervous system. J Neurotrauma 21:415–427

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Ratajczak J, Kucia M (2008) Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol 36:742–751

    Article  PubMed  CAS  Google Scholar 

  • Real C, Glavieux-Pardanaud C, Vaigot P, Le Douarin NM, Dupin E (2005) The Instability of the neural crest phenotypes: Schwann cells can differentiate into myofibroblasts. Int J Dev Biol 49:151–159

    Article  PubMed  CAS  Google Scholar 

  • Remy-Martin JP, Marandin A, Challier B, Bernard G, Deschaseaux M, Herve P, Wei Y, Tsuji T, Auerbach R, Dennis JE, Moore KA, Greenberger JS, Charbord P (1999) Vascular smooth muscle differentiation of murine stroma: a sequential model. Exp Hematol 27:1782–1795

    Article  PubMed  CAS  Google Scholar 

  • Rietze RL, Valcanis H, Brooker GF, Thomas T, Voss AK, Bartlett PF (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412 (6848):736–739

    Article  PubMed  CAS  Google Scholar 

  • Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA, Tourtellotte LM, Simburger K, Milbrandt J (1995) Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal gland and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci USA 92:10939–10943

    Article  PubMed  CAS  Google Scholar 

  • Sainson RCA, Harris AL (2008) Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies. Angiogenesis 11:41–51

    Article  PubMed  CAS  Google Scholar 

  • Sampoalesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D'Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MGC, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of a -sarcoglycan null dystrophic mice through intra-arterial delivery of mesangioblasts. Science 301: 487- 492

    Article  CAS  Google Scholar 

  • Scehnet JF, Jiang W, Kumar SR, Krasnoperov V, Trindade A, Benedito R, Djokovic D, Borges C, Ley EJ, Duarte A, Gill PS (2007) Inhibition of Dll4-mediated signalling induces proliferation of immature vessels and results in poor tissue perfusion. B lood 109:4753- 4760

    CAS  Google Scholar 

  • Schmahl J, Eicher EM, Washburn LL, Capel B (2000) Sry induces cell proliferation in the mouse gonad. Development 127:65–73

    PubMed  CAS  Google Scholar 

  • Schulze W, Davidoff MS, Holstein AF (1987a) Are Leydig cells of neural origin? Substance P-like immunoreactivity in human testicular tissue. Acta Endocrinol 115:373–377

    PubMed  CAS  Google Scholar 

  • Sharpe RM (1994) Regulation of spermatogenesis. In: E Knobil, JD Neil (eds) The physiology of reproduction, 2nd edn. Raven, New York, pp 1363–1434

    Google Scholar 

  • Shimizu Y, Motohashi N, Iseki H, Kunita S, Sugiyama F, Ygami K-I (2006) A novel subpopulation lacking Oct4 expression in the testicular side population. I nt J Mol Med 17:21–28

    CAS  Google Scholar 

  • Sieber-Blum M, Hu Y (2008) Epidermal neural crest stem cells (EPI-NCSC) and pluripotency. Stem Cell Rev 4:256–260

    Article  PubMed  Google Scholar 

  • Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41:51–60

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Brennan J, Karl J, Hamada Y, Raetzman L, Capel B (2008) Notch signalling maintains Leydig progenitor cells in the mouse testis. Development 135:3745–3753

    Article  PubMed  CAS  Google Scholar 

  • Tavian M, Zheng B, Oberlin E, Crisan M, Sun B, Huard J, Peault B (2005) The vascular wall as a source of stem cells. Ann N Y Acad Sci 1044:41–50

    Article  PubMed  Google Scholar 

  • Teerds K (1996) Regeneration of Leydig cells after depletion by EDS: a model for postnatal Leydig cell regeneration. In: Payne AH, Hardy MP, Russel LD (eds) The Leydig cell. Cache River, Vienna, pp 203–219

    Google Scholar 

  • Teerds KJ, de Boer-Brower M, Dorrington JH, Balvers M, Ivell R (1999) Identification of markers for precursor and Leydig cell differentiation in adult rat testis following ethane dimethyl sulphonate administration. Biol Reprod 60:1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Teerds KJ, Rijntjes E, Veldhuizen-Tsoerkan MB, Rommerts FFG, de Boer-Brouwer M (2007) The development of rat Leydig cell progenitors in vitro: how essential is luteinizing hormone? J Endocrinol 194:579–593

    Article  PubMed  CAS  Google Scholar 

  • Tilmann C, Capel B (1999) Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development 126:2883–2890

    PubMed  CAS  Google Scholar 

  • Tomita Y, Matsomura K, Wakamatsu Y, Matsuzaki Y, Shibuya I, Kawaguchi H, Ieda M, Kanakubo S, Shimazaki T, Ogawa S, Osumi N, Okano H, Fukuda K (2005) Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 26:1135–1146

    Article  CAS  Google Scholar 

  • Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, Bron D (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72:319–326

    Article  PubMed  CAS  Google Scholar 

  • Trainor PA, Melton KR, Manzanares M (2003) Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int J Dev Biol 47:541–553

    PubMed  Google Scholar 

  • Wasteson P, Johansson BR, Jukkola T, Breuer S, Akyurek LM, Partinen J, Lindahl P (2008) Developmental origin of smooth muscle cells in the descending aorta in mice. Development 135:1823–1832

    Article  PubMed  CAS  Google Scholar 

  • Weber DS (2008) A novel mechanism of vascular smooth muscle cell regulation by Notch: platelet-derived growth factor receptor-2 expression? Circ Res 102:1448–1450

    Article  PubMed  CAS  Google Scholar 

  • Weerasooriya TR, Yamamoto T (1985) Three-dimensional organisation of the vasculature of the rat spermatic cord and testis. A scanning electron-microscopic study of vascular corrosion casts. Cell Tissue Res 241:317–323

    Article  PubMed  CAS  Google Scholar 

  • Weinstein BM (2005) Vessels and nerves: marching to the same tune. Cell 120:299–302

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi Y, Abe K, Mantani A, Hitoshi Y, Suzuki M, Osuzu F, Kuratani S, Yamamura K-I (1999) A novel technique that allows specific marking of the neural crest cell lineage in mice. Dev Biol 212:191–203

    Article  PubMed  CAS  Google Scholar 

  • Yao HH-C, Barsoum I (2007) Fetal Leydig cells. Origin, regulation, and function. In: Payne AH, Hardy MP (eds) Contemporarry endocrinology: the Leydig cell in health and disease. Humana, Totowa, pp 47–54

    Chapter  Google Scholar 

  • Yao HH-C, Whoriskey W, Capel B (2002) Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16:1433–1440

    Article  PubMed  CAS  Google Scholar 

  • Yao HH-C, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A, Capel B (2004) Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230:210–215

    Article  PubMed  CAS  Google Scholar 

  • Yao HH-C, Aardema J, Holthusen K (2006) Sexually dimorphic regulation of inhibin B in establishing gonatal vasculature in mice. Biol Reprod 74:978–983

    Article  PubMed  CAS  Google Scholar 

  • Yazawa T, Mizutani T, Yamada K, Kawata H, Sekiguchi T, Yoshino M, Kajitani T, Shou Z, Umezawa A, Miyamoto K (2006) Differentiation of adult stem cells derived from bone marrow stroma into Leydig and adrenocortical cells. Endocrinology 147:4104–4111

    Article  PubMed  CAS  Google Scholar 

  • Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D (1997) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7:335–344

    Article  PubMed  CAS  Google Scholar 

  • Young HM (2004) Existence of reserve quiescent stem cells in adults, from amphibians to humans. Curr Top Microbiol Immunol 280:71–109

    PubMed  CAS  Google Scholar 

  • Zhang Y, Ge R, Hardy MP (2008) Androgen-forming Leydig cells: identification, function and therapeutic potential. Dis Markers 24:277–286

    PubMed  CAS  Google Scholar 

  • Zimmerman L, Lendahl U, Cunningham M, McKay R, Parr B, Gavin B, Mann J, Vassileva G, McMahon A (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12:11–24

    Article  PubMed  CAS  Google Scholar 

  • Baker PJ, O’Shaughnessy PJ (2001a) Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. R eproduction 122: 227- 2 34

    CAS  Google Scholar 

  • O’Shaughnessy PJ, Baker PJ, Johnston H (2006) The foetal Leydig cell - differentiation, function and regulation. Int J Androl 29:90–95

    Article  PubMed  CAS  Google Scholar 

  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121

    Article  PubMed  CAS  Google Scholar 

  • Tilman C, Capel B (2002) Cellular and molecular pathways regulating mammalian sex determination. Recent Prog Horm Res 57:1–18

    Article  Google Scholar 

  • Dong L, Jelinsky SA, Finger JN, Johnston DS, Korf GS, Sottas CM, Hardy MP, Ge R-S (2007) Gene expression during development of fetal and adult Leydig cells. Ann N Y Acad Sci 1120:16–35

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer A (1996) Leydig cell regulation by catecholamines and neuroendocrine messengers. In: Payne AH, Hardy MP, Russell LD (eds) The Leydig cell. Cache River, Vienna, pp 407–417

    Google Scholar 

  • Bakalska M, Atanassova N, Koeva Y, Nikolov B, Davidoff M (2004) Induction of male germ cell apoptosis by testosterone withdrawal after ethane dimethanesulfonate treatment in adult rats. Endocr Regul 38:103–110

    PubMed  CAS  Google Scholar 

  • Davidoff MS, Middendorff R (2000) T he nitric oxide sytsem in the urogenital tract. In: Steinbusch HWM, de Vente J, Vincent S (eds) Functional neuroanatomy of the nitric oxide system. Handbook of chemical neuroanatomy, vol 17. Elsevier, Amsterdam, pp 267–314

    Chapter  Google Scholar 

  • Davidoff MS, Middendorff R, Mayer B, Holstein AF (1995) Nitric oxide synthase (NOS-1) in Leydig cells of the human testis. Arch Histol Cytol 58:17–30

    Article  PubMed  CAS  Google Scholar 

  • Davidoff MS, Middendorff R, Holstein AF (1996) Dual nature of Leydig cells of the human testis. Biomed Rev 6:11–41

    Google Scholar 

  • Davidoff MS, Middendorff R, Mayer B, de Vente J, Koesling D, Holstein AF (1997a) Nitric oxide/cGMP-pathway components in Leydig cells of the human testis. Cell Tissue Res 287:161–170

    Article  PubMed  CAS  Google Scholar 

  • Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P, Bron D, Lagneaux L (2008) Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 9:166. doi:10.1186/1471-2164-9-166

    Article  PubMed  CAS  Google Scholar 

  • Real C, Glavieux-Pardanaud C, Le Douarin NM, Dupin E (2006) Clonally cultured differentiated pigmented cells can differentiate and generate multipotent progenitors with self-renewing potential. Dev Biol 300:656–669

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Laure L (2004) Cell surface molecules and truncal neural crest ontogeny: a perspective. Birth Defects Res Part C 72:140–150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail S. Davidoff .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davidoff, M.S., Middendorff, R., Müller, D., Holstein, A.F. (2009). Fetal and Adult Leydig Cells Are of Common Orig. In: The Neuroendocrine Leydig Cells and their Stem Cell Progenitors, the Pericytes. Advances in Anatomy, Embryology and Cell Biology, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00513-8_8

Download citation

Publish with us

Policies and ethics