Skip to main content

Functional biodiversity and climate change along an altitudinal gradient in a tropical mountain rainforest

  • Chapter
  • First Online:
Tropical Rainforests and Agroforests under Global Change

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

This article investigates possible consequences of climate change for a hotspot of tropical biodiversity, exemplified by a comparatively small area of a neotropical mountain rain forest in the eastern range of the South Ecuadorian Andes. In the introduction, several approaches for such predictions are evaluated with respect to their applicability to the eco-region. After a short presentation of the research area and its biodiversity, climate and vegetation development during the Holocene is described showing the range of possible fluctuations between Puna-like grassland and tropical mountain forest. Data of climate dynamics during the past 50 – 60 years, covering several ENSO (El Niño Southern Oscillation) events, suggest a significant increase in temperature but no dramatic changes in the precipitation regimes of the region. Due to the altitudinal span of the area, the rise in temperature will shift the ecothermic belts by several hundred meters uphill and thus increase the distribution ranges of ectothermic organisms. To assess the consequences of this shift on biodiversity two model approaches were applied, namely the species-area-approach and the energetic-equivalence rule, using the extremely diverse insect group of moths. Combining both approaches the consequences of a climate change Teja Tscharntke, Christoph Leuschner, Edzo Veldkamp, Heiko Faust, Edi Guhardja, Arifuddin Bidin (editors): Tropical rainforests and agroforests under global change: Ecological and socio-economic valuations. Springer Berlin 2010, pp 239–268 240 J. Bendix et al. can be estimated for the various scenarios of greenhouse gas emissions published by the International Panel on Climate Change (IPCC 2007). Applying the most realistic scenario A1B a reduction of moth species by 31% until the year 2100 can be predicted for the RBSF area. Due to their greater life-span, woody plants are much more resilient to climate change, especially so in a megadiverse forest with usually small population sizes. Therefore impacts of global warming on the local vegetation can only be assessed on the basis of qualitative data of the forest structure rather than of the floristic composition. The most conspicuous trait of the tropical mountain rain forest in the region is the low elevation of the upper tree-line which on average is by 1000 to 1500 m lower than in the other parts of the tropical Andes. Due to the particular orographic situation, the extreme environmental conditions (quasipermanent easterly storms carrying a tremendous load of precipitation) do not allow growth of trees in the peak regions of the mountains. Only if the prevailing trade-wind system dampened and the mountain range received less precipitation, a change of the environmental conditions could be expected resulting in a situation like in the early and mid Holocene, when a forest covered the entire mountain range. However, up to present, symptoms for such a change are lacking. A final outlook comments on the priority ranking of climate change vs. direct anthropogenic impacts with respect to conservation measures. For the investigated tropical forest ecosystem a reduction of human impact is more urgent than ever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297: 1545–1548

    Article  CAS  Google Scholar 

  • Baader MY, Geloof I, Rietkerk M (2007) High solar radiation hinders tree regeneration above the alpine tree line in northern Ecuador. Plant Ecol 191: 33–45

    Article  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431–433

    Article  CAS  Google Scholar 

  • Barthlott W, Hostert A, Kier G, Küper W, Kreft H, Mutke J, Rafiqpoor D, Sommer JH (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61: 305–315

    Article  Google Scholar 

  • Beck E, Makeschin F, Haubrich F, Richter M, Bendix J, Valerezo C (2008a) The ecosystem (Reserva Biológica San Francisco). In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds), Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198: 1–13

    Google Scholar 

  • Beck E, Kottke I, Bendix J, Makeschin F, Mosandl R (2008b) Gradients in a tropical mountain ecosystem – a synthesis. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds), Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198: 451–463

    Google Scholar 

  • Beck E, Scheibe R, Schulze E-D (1986) Recovery from fire: Observations in the alpine vegetation of western Mt. Kilimajaro (Tanzania). Phytocoenologia 14: 55–77

    Google Scholar 

  • Beck E, Richter M (2008) Ecological aspects of a biodiversity hotspot in the Andes of southern Ecuador. In: Gradstein SR, Homeier J, Gansert D (eds.): The tropical mountain forest – Patterns and Processes in a Biodiversity Hotspot. Biodiv Ecol Ser 2: 197–219

    Google Scholar 

  • Behling H, Hooghiemstra H (2000) Holocene Amazon rain forest–savanna dynamics and climatic implications: high resolution pollen record from the Laguna Loma Linda in eastern Colombia. J Quaternary Sci 15: 687–695

    Article  Google Scholar 

  • Behling H, Hooghiemstra H (2001) Neotropical savanna environments in space and time: Late Quaternary interhemispheric comparisons. In: Markgraf V (ed), Interhemispheric Climate Linkages. Academic Press, New York, 307- 323

    Chapter  Google Scholar 

  • Bendix, J, Rafiqpoor MD, Daud M (2001) Studies on the thermal conditions of soils at the upper tree line in the Páramo of Papallacta (Eastern cordillera of Ecuador). Erdkunde 55: 257–276

    Article  Google Scholar 

  • Bendix J, Homeier J, Cueva Ortiz E, Emck P, Breckle S, Richter M, Beck E (2006) Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest. Int J Biometeor 50: 370–384

    Article  CAS  Google Scholar 

  • Bendix J, Rollenbeck R, Richter M, Fabian P, Emck P (2008a) Climate. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds), Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198: 63–73

    Google Scholar 

  • Bendix J, Rollenbeck R, Fabian P, Emck P, Richter M, Beck E (2008b) Climate variability. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds), Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198: 281–290

    Google Scholar 

  • Botkin DB, Saxe H, Araùjo MB, Betts R, Bradshaw RHW, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Skjolborg HA, Hilbert DW, Loehle C, Margules C, New M, Sobel MJ, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. BioScience 57: 227–236

    Article  Google Scholar 

  • Brehm G, Süssenbach D, Fiedler K (2003) Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26: 456–466

    Article  Google Scholar 

  • Brehm G, Pitkin LM, Hilt N, Fiedler K (2005) Montane Andean rain forests are a global diversity hotspot of geometrid moths. J Biogeogr 32: 1621–1627

    Article  Google Scholar 

  • Brehm G, Homeier J, Fiedler K, Kottke I, Illig J, Nöske NM, Werner FA, Breckle S-W (2008)Mountain rain forests in southern Ecuador as a hotspot of biodiversity – limited knowledge and diverging patterns. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds), Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198: 15–23

    Google Scholar 

  • Brunschön C, Behling H (submitted). Late Quaternary vegetation, fire and climate history reconstructed from two cores at Cerro Toledo, Podocarpus National Park, southeastern Ecuadorian Andes. Quaternary Res

    Google Scholar 

  • Chen I-C, Shiu H-J, Benedick S, Holloway JD, Chey VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. PNAS 103: 10334–10339

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional Climate Projections. In: (Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Colwell RK, Brehm G, Cardelius CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322: 258–261

    Article  CAS  Google Scholar 

  • Dziedzioch C, Stevens A-D, Gottsberger G (2003) The hummingbird -plant community of a tropical mountain rainforest in southern Ecuador. Plant Biol 5: 331–337

    Article  Google Scholar 

  • Emck P (2007) A climatology of South Ecuador. With special focus on the major Andean Ridge as Atlantic-Pacific Climate Divide. PhD Thesis, Univ Erlangen http://www.opus.ub.uni-erlangen.de/opus/frontdoor.php?source_opus=656

  • Fiedler K, Brehm G, Hilt N, Süßenbach D, Häuser CL (2008) Variation of diversity patterns across moth families along a tropical altitudinal gradient. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds), Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198: 167–179

    Google Scholar 

  • Goldammer JG, Seibert B (1989) Natural rain-forest fires in Eastern Borneo during the Pleistocene and Holocene. Naturwissenschaften 76: 518–520.

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (2001) Long-term monitoring of mountain peaks in the Alps. Tasks Veg Sci 35: 153–177

    Google Scholar 

  • Grosjean M, Nuñez L (1994) Late glacial, early and middle Holocene environments, human occupation, and ressource use in the Atacama (northern Chile). Geoarcheology 9: 271–286

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: Offering more than simple habitat models. Ecol Lett 9: 993–1009

    Article  Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. PNAS, 103, 10334-10339

    Article  CAS  Google Scholar 

  • Iost S, Makeschin F, Abiy M, Haubrich F (2008) Biotic soil activities. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds), Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198: 217–227

    Google Scholar 

  • Jost L (2004) Explosive local radiation of the genus Teagueia (Orchidaceae) in the Upper Pastaza Watershed of Ecuador. Lyonia 7: 42–47

    Google Scholar 

  • Keating PL (1998) Effects of anthropogenic disturbances on páramo vegetation in Podocarpus National Park, Ecuador. Phys Geogr 19: 221–238

    Google Scholar 

  • Keating PL (2008) Floristic composition and biogeographical significance of a megadiverse páramo site in the southern Ecuadorian Andes. J Torrey Bot Soc 135: 554–570

    Article  Google Scholar 

  • Kessler M, Böhner J, Kluge J (2007) Modelling tree height to assess climatic conditions at tree lines in the Bolivian Andes. Ecol Modelling 207: 223–233

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-Year Reanalysis: Monthly Means CDROM and Documentation. Bull Am Meteorol Soc 82: 247–267

    Article  Google Scholar 

  • Klanderud K, Birks HJB (2003) Recent increase in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene 13: 1–6

    Article  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude tree line temperatures. J Biogeogr 31: 713–732

    Article  Google Scholar 

  • Koh LP, Dunn RR, Sodhi NS, Colwell RK, Proctor HC, Smith VS (2004) Species coextinctions and the biodiversity crisis. Science 305: 1632–1634

    Article  CAS  Google Scholar 

  • Kottke I, Haug I, Setaro S, Suárez JP, Weiß M, Preußing M, Nebel M, Oberwinkler F (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9: 13–23

    Article  CAS  Google Scholar 

  • Lewis OT (2006) Climate change: Species-area curves and the extinction crisis. Phil Trans Roy Soc B 361: 163–171

    Article  Google Scholar 

  • Liede-Schumann S, Breckle S-W (eds.) (2008) Provisional checklist of flora and fauna of the San Francisco Valley and its surroundings (Reserva Biológica San Francisco, Province Zamora-Chinchipe, southern Ecuador). Ecotrop Monogr 4, 256 p

    Google Scholar 

  • Mayle F, Burbridge R, Killeen TJ (2000) Millennial-scale dynamics of southern Amazonian rain forests. Science 290: 2291–2294

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P , Gaye AT, Gregory JM, Kitoh A, Knutt, R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery, KB, Tignor M, Miller HL (eds) Global Climate Projections–Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 p

    Google Scholar 

  • Miles L, Grainger A, Philips O (2004) The impact of global climate change on tropical forest biodiversity in Amazonia. Glob Ecol Biogeogr 13: 553–565

    Article  Google Scholar 

  • Mosandl R, Günter S, Stimm B, Weber M (2008) Ecuador suffers the highest deforestation rate in South America. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds), Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198: 37–40

    Google Scholar 

  • Niemann H, Behling H (2008) Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes. J Quaternary Sci 3: 203–212

    Article  Google Scholar 

  • Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453: 216–220

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12: 361–371

    Article  Google Scholar 

  • Polissar PJ, Abbott MB, Shemesh A, Wolfe AP, Bradley RS (2006) Holocene hydrologic balance of tropical South America from oxygen isotopes of lake sediment opal, Venezuelan Andes. Earth Planetary Sci Lett 242: 375–389

    Article  CAS  Google Scholar 

  • RichterM(2008) Tropical mountain forests–distribution and general features. In: Gradstein SR; Homeier J, Gansert D (eds): The Tropical Mountain forest – Patterns and Processes in a Biodiversity Hotspot. Biodiv Ecol Ser 2: 7–24

    Google Scholar 

  • Richter M, Diertl K-H, Peters T and Bussmann RW (2008) Vegetation structure and ecological features of the upper timberline ecotone. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecol stud 198: 123–135

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Summary for Policymakers–Climate Change 2007: The Physical Science Basis. Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC 2007, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 18

    Google Scholar 

  • Still CJ, Prudence N, Foster PN, Stephen H (1999) Stimulating the effects of climate change on tropical montane cloud forests. Nature 398: 608–610

    Article  CAS  Google Scholar 

  • Stimm B, Beck E, Günter S, Aguirre N, Cueva E, Mosandl R,Weber M (2008) Reforestation of abandoned pastures: Seed ecology of native species and production of indigenous plant material. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds), Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198: 417–429

    Google Scholar 

  • Stork NE (2007) World of Insects. Nature 448: 657–658

    Article  CAS  Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: A review. Climatic change 50: 77–109

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont L, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Graininger A, Hannah L, Hughes L, Huntley B, Jaarsveld AS van, Midgley GF, Miles L, Ortega- Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427: 145–148

    Article  CAS  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species range shifts under climate change. Glob Change Biol 10: 2020–2027

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araùjo MB, Sykes MT, Prentice IC (2005) Climate change threats plant diversity in Europe. Proc Nat Acad Sci USA 102: 8245–8250

    Article  CAS  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison, MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441: 73–76

    Article  CAS  Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: Past, present and future. Earth Sci Rev 89: 479–496

    Article  Google Scholar 

  • Walther G-R, Beissner S, Burga CA (2005) Trends in upward lift of alpine plants. J Veg Sci 16: 541–548

    Article  Google Scholar 

  • Weigend M (2002) Observations on the biogeography of the Amotape- Huancabamba Zone in northern Peru. Bot Rev 68: 38–54

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Nat Acad Sci USA 104: 5738–5742

    Article  CAS  Google Scholar 

  • Young KR, Reynel C (1997) Huancabamba Region, Peru and Ecuador. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds.) Centers of plant diversity. A guide and strategy for their conservation 3: 465–469

    Google Scholar 

Reference

  • Nakicenovic N, Swart, R (eds, 2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Bendix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bendix, J., Behling, H., Peters, T., Richter, M., Beck, E. (2010). Functional biodiversity and climate change along an altitudinal gradient in a tropical mountain rainforest. In: Tscharntke, T., Leuschner, C., Veldkamp, E., Faust, H., Guhardja, E., Bidin, A. (eds) Tropical Rainforests and Agroforests under Global Change. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00493-3_11

Download citation

Publish with us

Policies and ethics