Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1145 Accesses

Abstract

Nature frequently uses cellular and porous materials for creating load-carrying and weight-optimized structures. Thanks to their cellular design, natural materials such as wood, cork, bones, and honeycombs fulfill structural as well as functional demands. For a long time, the development of artificial cellular materials has been aimed at utilizing the outstanding properties of biological materials in technical applications. As an example, the geometry of honeycombs was identically converted into aluminum structures which have been used since the 1960s as cores of lightweight sandwich elements in the aviation and space industries. Nowadays, in particular, foams made of polymeric materials are widely used in all fields of technology. For example, Styrofoam® and hard polyurethane foams are widely used as packaging materials. Other typical application areas are the fields of heat and sound absorption. During the last few years, techniques for foaming metals and metal alloys and for manufacturing novel metallic cellular structures have been developed. Owing to their specific properties, these cellular materials have considerable potential for applications in the future. The combination of specific mechanical and physical properties distinguishes them from traditional dense metals, and applications with multifunctional requirements are of special interest in the context of such cellular metals. Their high stiffness, in conjunction with a very low specific weight, and their high gas permeability combined with a high thermal conductivity can be mentioned as examples. Cellular materials comprise a wide range of different arrangements and forms of cell structures. Metallic foams are being investigated intensively, and they can be produced with an open- or closed-cell structure, cf. Fig. 1.1. Their main characteristic is their very low density. The most common foams are made of aluminum alloys. Essential limiting factors for the utilization are unevenly distributed material parameters and relatively high production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams: A Design Guide. Butterworth-Heinemann, Boston (2000)

    Google Scholar 

  2. Degischer, H.-J., Kriszt, B.: Handbook of Cellular Metals: Production, Processing, Applications. Wiley-VCH, Weinheim (2002)

    Book  Google Scholar 

  3. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structures & Properties. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  4. Öchsner, A., Murch, G.E., de Lemos, J.S.: Cellular and Porous Materials: Thermal Properties Simulation and Prediction. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  5. Scheffler, M., Colombo, P.: Cellular Ceramics. Structure, Manufacturing, Properties and Applications. Wiley-VCH, Weinheim (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Öchsner, A., Augustin, C. (2009). Introduction. In: Öechsner, A., Augustin, C. (eds) Multifunctional Metallic Hollow Sphere Structures. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00491-9_1

Download citation

Publish with us

Policies and ethics