Skip to main content

Multiple-Target Anti-miRNA Antisense Oligonucleotides Technology

  • Chapter
  • First Online:
  • 954 Accesses

Abstract

The multiple-target AMO technology or MT-AMO technology is an innovative strategy that confers a single AMO fragment the capability of targeting multiple miRNAs. These modified AMOs are single-stranded 2′-O-methyl-modified oligoribonucleotides carrying multiple AMO units that are engineered into a single unit and are able to simultaneously silence multiple target miRNAs or multiple miRNA seed families. Studies suggest the MT-AMO is an improved approach for miRNA target finding and miRNA function validation; it not only enhances the effectiveness of targeting miRNAs but also confers diversity of actions. It has been successfully used to identify target genes and cellular function of several oncogenic miRNAs and of the muscle-specific miRNAs [Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, Yang B, Nucleic Acid Res. 2009]. This novel strategy may find its broad application as a useful tool in miRNA research for exploring biological processes involving multiple miRNAs and multiple genes and potential as a miRNA therapy for human disease such as cancer and cardiac disorders. This technology was developed by my research laboratory in collaboration with Yang's group (Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, Yang B 2009). The MT-AMO technology belongs to the “targeting-miRNA” and “miRNA-loss-of-function” strategy. The MT-AMO technology is based on the ‘One-Drug, Multiple-Target’ concept (see Sect. 2.1.3 for detail).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bartel DP, Chen CZ (2004) Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396-400.

    Article  PubMed  CAS  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298-1307.

    Article  PubMed  CAS  Google Scholar 

  • Charpentier G (2002) Oral combination therapy for type 2 diabetes. Diabetes Metab Res Rev 18(Suppl 3):S70-S76.

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228-233.

    Article  PubMed  CAS  Google Scholar 

  • Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361-52365.

    Article  PubMed  CAS  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065-7070.

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635-647.

    Article  PubMed  CAS  Google Scholar 

  • Henkel J (1999) Attacking AIDS with a ‘cocktail’ therapy? FDA Consum 33:12-17.

    Google Scholar 

  • Konlee M (1998) An evaluation of drug cocktail combinations for their immunological value in preventing/remitting opportunistic infections. Posit Health News 16:2-4.

    Google Scholar 

  • Krek A, Grun D, Poy M, Wolf R, Rosenberg L, Epstein E, MacMenamin P, da Piedade I, Gunsalus K, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495-500.

    Article  PubMed  CAS  Google Scholar 

  • Kumar P (2005) Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Lab Investig 85:756-767.

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Kim HK, Chung S, Kim KS, Dutta A (2005) Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 280:16635-16641.

    Article  PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769-773.

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, Yang B (2009) Complex antisense inhibitors offer a superior approach for microRNA research and therapy. Nucleic Acids Res 37:e24–e33.

    Google Scholar 

  • Nabholtz JM, Gligorov J (2005) Docetaxel/trastuzumab combination therapy for the treatment of breast cancer. Expert Opin Pharmacother 6:1555-1564.

    Article  PubMed  CAS  Google Scholar 

  • Ogihara T (2003) The combination therapy of hypertension to prevent cardiovascular events (COPE) trial: Rationale and design. Hypertens Res 28:331-338.

    Article  Google Scholar 

  • Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919-922.

    Article  PubMed  CAS  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226-230.

    Article  PubMed  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283-289.

    Article  PubMed  CAS  Google Scholar 

  • Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267.

    Google Scholar 

  • Vermeulen A, Robertson B, Dalby AB, Marshall WS, Karpilow J, Leake D, Khvorova A, Baskerville S (2007) Double-stranded regions are essential design components of potent inhibitors of RISC function. RNA 13:723-730.

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257-2261.

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Lin H, Xiao J, Luo X, Li B, Lu Y, Wang H, Wang Z (2007) The muscle-specific microRNA miR-1 causes cardiac arrhythmias by targeting GJA1 and KCNJ2 genes. Nat Med 13:486-491.

    Article  PubMed  CAS  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594-596.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z. (2009). Multiple-Target Anti-miRNA Antisense Oligonucleotides Technology. In: MicroRNA Interference Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00489-6_8

Download citation

Publish with us

Policies and ethics