Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 55))

  • 852 Accesses

Abstract

The parameter setting of an algorithm that will result in optimal performance is a tedious task for users who spend a lot of time fine-tuning algorithms for their specific problem domains. This paper presents a multi-agent tuning system as a framework to set the parameters of a given algorithm which solves a specific problem. Besides, such a configuration is generated taking into account the current problem instance to be solved. We empirically evaluate our multi-agent tuning system using the configuration of a genetic algorithm applied to the root identification problem. The experimental results show the validity of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H.: A new look at statistical model identification. IEEE Transactions on Automatic Control 19, 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barreiro, E.: Modelización y optimización de algoritmos genéticos para la selección de la solución deseada en resolución construtiva de restricciones geométricas. PhD thesis, Dpto. de Informática. Universidade de Vigo., Marzo (2006)

    Google Scholar 

  3. Bouma, W., Fudos, I., Hoffmann, C., Cai, J., Paige, R.: Geometric constraint solver. Computer-Aided Design 27(6), 487–501 (1995)

    Article  MATH  Google Scholar 

  4. DeGroot, M.H.: Optimal Statistical Decisions. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  5. Essert-Villard, C., Schreck, P., Dufourd, J.F.: Sketch-based pruning of a solution space within a formal geometric constraint solver. Artificial Intelligence Journal 1(124), 139–159 (2000)

    Article  MathSciNet  Google Scholar 

  6. Document Title Fipa. Fipa interaction protocol library specification, http://www.fipa.org/specs/fipa00025/

  7. http://www.fipa.org

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  9. Heckerman, D.: A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, Redmond, Washington (1995)

    Google Scholar 

  10. Hoffmann, C.M., Joan-Arinyo, R.: A brief on constraint solving. Computer-Aided Design and Applications 2(5), 655–663 (2005)

    Google Scholar 

  11. Jeffreys, H.: Theory of Probability. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  12. Jensen, F.V.: An Introduction to Bayesian Networks. Springer, Heidelberg (1996)

    Google Scholar 

  13. Kohavi, R., John, G.: Automatic parameter selection by minimizing estimated error. In: Prieditis, A., Russell, S. (eds.) Proceedings of the 12th International Conference on Machine Learning, Lake Tahoe, CA, pp. 304–312. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  14. Luzón, M.V.: Resolución de Restricciones geométricas. Selección de la Solución Deseada. PhD thesis, Dpto. de Informática. Universidade de Vigo., Septiembre (2001)

    Google Scholar 

  15. Nilsson, D.: An efficient algorithm for finding the m most probable configurations in bayesian networks. Statistics and Computing 8(2), 159–173 (1998)

    Article  Google Scholar 

  16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1998)

    Google Scholar 

  17. Sagrado, J.D.: Fusión topológica y cuantitativa de redes causales. Universidad de Almería. Servicio de publicaciones (2000)

    Google Scholar 

  18. Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley and Sons, Chichester (1995)

    Google Scholar 

  19. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. Lectures Notes in Statistics, vol. 81. Springer, New York (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pavón, R., Glez-Peña, D., Laza, R., Díaz, F., Luzón, M.V. (2009). A Multi-Agent System Approach for Algorithm Parameter Tuning. In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J. (eds) 7th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009). Advances in Intelligent and Soft Computing, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00487-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00487-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00486-5

  • Online ISBN: 978-3-642-00487-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics