Skip to main content

Pharmaceutically Used Polymers: Principles, Structures, and Applications of Pharmaceutical Delivery Systems

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 197))

Abstract

This chapter presents a general overview of pharmaceutically used polymers with respect to their physicochemical characteristics and factors affecting drug delivery abilities. Pharmaceutical polymers, chemical structure, and properties are discussed for their applications in controlled drug release systems. An additional focus is on new polymers (dendrimers, hyperbranched polymers), considering their chemical versatility, uniqueness, and future implications. Problems associated with controlled drug release systems are also highlighted. Finally, applications of FDA-approved polymers used for oral drug delivery systems are outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ab:

Antibody

API:

Active pharmaceutical ingredient

C max :

Concentration maximum

CRS:

Controlled released system

DDS:

Drug delivery system

EPR:

Enhanced permeability and retention

FDA:

Food and Drug Administration (USA)

G2 (PAMAM):

Generation 2 polyamidoamine dendrimers

GR:

Gastro-retentive delivery systems

HPMA:

N-(2-Hydroxypropyl)methacrylamide

HPMC:

Hydroxypropylmethylcellulose

IgG:

Human immunoglobulinG

M w :

Molecular weight

mPEG-OH:

Polyethylene glycol monomethyl ether

PAA:

Poly(acrylic acid)

PAMAM:

Polyamidoamine

PDDS:

Pulsatile drug delivery system

PDI:

Polydispersity index

PEG:

Poly(ethylene glycol)

PEO:

Poly(ethylene oxide)

PGA:

Poly(glutamic acid)

pk a :

Acid dissociation constant

PLA:

Polylactic acid

PLGA:

poly(lactic-co-glycolic acid) copolymer

PMMA:

Polymethylmethacrylate

PVA:

Poly vinyl alcohol

RES:

Reticular endothelium system

References

  • Abuchowski A, Van Es T, Palczuk NS, Davis FF (1997) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252:3578–3581

    Google Scholar 

  • Alakhov V, Pietrzynski G, Patel K, Kabanov A, Bromberg L, Hatton TA (2004) Pluronic block copolymers and Pluronic poly(acrylic acid) microgels in oral delivery of megestrol acetate. J Pharm Pharmacol 56:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Ali A, Ahuja A, Baboota S, Qureshi J (2006) Pulsatile drug delivery systems: An approach for controlled drug delivery. Ind J Pharm Sci 68:295–300

    Article  CAS  Google Scholar 

  • Bergsma EJ, Rozema FR, Bos RR, de Bruijn WC (1993) Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg 51:666–670

    Article  CAS  PubMed  Google Scholar 

  • Betancourt T, Brown B, Brannon-Peppas L (2007) Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine 2:219–232

    Article  CAS  Google Scholar 

  • Boldhane S (2008) Development and evaluation of oral platform drug delivery technology. In: Shivaji University, vol Ph.D. Thesis pp 12–13

    Google Scholar 

  • Brazel CS, Peppas NA (2000) Modeling of drug release from swellable polymers. Eur J Pharm Biopharm 49:47–58

    Article  CAS  PubMed  Google Scholar 

  • Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The polymer-brain tumor treatment group. Lancet 345:1008–1012

    Article  CAS  PubMed  Google Scholar 

  • Bromberg L (2008) Polymeric micelles in oral chemotherapy. J Control Release 128:99–112

    Article  CAS  Google Scholar 

  • Chasin M, Domb A, Ron E, Mathiowitz E, Langer R, Leong K, Laurencin C, Brem H, Grossman S (1990) Polyanhydrides as drug delivery systems. In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, pp 43–70

    Google Scholar 

  • Choi BY, Park HJ, Hwang SJ, Park JB (2002) Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents. Int J Pharm 239:81–91

    Article  CAS  PubMed  Google Scholar 

  • Chourasia MK, Jain SK (2003) Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Sci 6:33–66

    CAS  PubMed  Google Scholar 

  • Colombo P, Santi P, Bettini R, Prazel CS, Peppas NA (2000) Mechanism-based classification of controlled release devices. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. CRC Press, New York, p 493

    Google Scholar 

  • David A, Kopeckova P, Kopecek J, Rubinstein A (2002) The role of galactose, lactose, and galactose valency in the biorecognition of N-(2-hydroxypropyl)methacrylamide copolymers by human colon adenocarcinoma cells. Pharm Res 19:1114–1122

    Article  CAS  PubMed  Google Scholar 

  • de Leeuw BJ, Lueben HL, Pérard D, Verhoef AC, de Boer AG, Junginger HE (1995) The effect of mucoadhesive poly(acrylates) polycarbophil and carbomer on zinc and calcium dependent proteases. Proc Int Symp Control Rel Bioact Mater 22:528–529

    Google Scholar 

  • Degussa (2001) http://www.degussa-history.com/geschichte/en/inventions/eudragit/in:

  • Dittigen M, Fricke S, Timpe C, Gercke H, Eichardt A (2000) Method of making a perorally administered solid drug with controlled effective ingredient delivery. US Patent No 6117450, USA

    Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Seymour L (2007) Hiroshi Maeda–defining the pathway to targeted cancer therapy. J Drug Target 15:456

    Article  CAS  PubMed  Google Scholar 

  • FDA (2004) http://www.fda.gov/medwatch/SAFETY/2004/jul_PI/CiproXR_PI.pdf

  • FDA (2006a) http://www.fda.gov/cder/foi/label/2006/018936s076lbl.pdf

  • FDA (2006b) http://www.fda.gov/medwatch/safety/2006/Paxil%20CR_PI.pdf

  • FDA (2008) http://www.fda.gov/cber/rules/amendcgmpfinal.htm

  • FDA (2008a) http://www.fda.gov/cder/dmpq

  • Field JR, Stanley RM (2004) Suture characteristics following incubation in synovial fluid or phosphate buffered saline. Injury 35:243–248

    Article  PubMed  Google Scholar 

  • Ford JE (1994) Fundamental aspects of drug release form hydrophilic matrix tablets. In: Proc Colorcon Controlled Release Symposium, pp 1–26

    Google Scholar 

  • Gazzaniga A, Palugan L, Foppoli A, Sangalli ME (2008) Oral pulsatile delivery systems based on swellable hydrophilic polymers. Eur J Pharm Biopharm 68:11–18

    Article  CAS  PubMed  Google Scholar 

  • Guyot M, Fawaz F (2000) Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int J Pharm 204:171–182

    Article  CAS  PubMed  Google Scholar 

  • Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed 45:1170–1179

    Article  Google Scholar 

  • Haag R, Sunder A, Stumbé JF (2000) An approach to glycerol dendrimers and pseudo-dendritic polyglycerols. J Am Chem Soc 122:2954–2955

    Article  CAS  Google Scholar 

  • Hamdan AM, Moseke C, Blanco L, Barralet JE, Lopez-Carbacos E, Gbureck U (2008) Strontium modified biocements with zero order release kinetics. Biomaterials 29:4691–4697

    Article  Google Scholar 

  • Haus E (2007) Chronobiology in the endocrine system. Adv Drug Deliv Rev 59:985–1014

    Article  CAS  PubMed  Google Scholar 

  • Hebden JM, Wilson CG, Spiller RC, Gilchrist PJ, Blackshaw E, Frier ME, Perkins AC (1999) Regional differences in quinine absorption from the undisturbed human colon assessed using a timed release delivery system. Pharm Res 16:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Jian-Hwa G (2003) Carbopol®® polymers for pharmaceutical drug delivery applications. Drug Del Tech 3:6

    Google Scholar 

  • Khandare JJ, Minko T (2006) Polymer-drug conjugates: progress in polymeric prodrugs. Progress Polymer Sci 31:359–397

    Article  CAS  Google Scholar 

  • Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, Minko T (2006) Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug Chem 17:1464–1472

    Article  CAS  PubMed  Google Scholar 

  • Kopecek J, Bazilova H (1973) Poly(N-(hydroxypropyl)-methacrylamide) radical polymerization and copolymerization. Eur Polym J 9:7–14

    Article  CAS  Google Scholar 

  • Langer R, Chasin M (1990) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, p 47

    Google Scholar 

  • Laurencin C, Domb A, Morris C, Brown V, Chasin M, McConnell R, Lange N, Langer R (1990) Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology. J Biomed Mater Res 24:1463–1481

    Article  CAS  PubMed  Google Scholar 

  • Lee WC, Chu IM (2008) Preparation and degradation behavior of polyanhydrides nanoparticles. J Biomed Mater Res B Appl Biomater 84:138–146

    Article  PubMed  Google Scholar 

  • Lee CC, MacKay JA, Frechet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Lee K, Park TG (2008) Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjug Chem 19:1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Lehr CM, Bouwstra JA, Tukker JJ, Junginger HE (1990) Intestinal transit of bioadhesive microspheres in an in situ loop in the rat: a comparative study with copolymers and blends based on poly(acrylic acid). J Control Release 13:51–62

    Article  CAS  Google Scholar 

  • Lehr CM, Bouwstra JA, Bodde HE, Junginger HE (1992) A surface energy analysis of mucoadhesion: contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant fluids. Pharm Res 9:70–75

    Article  CAS  PubMed  Google Scholar 

  • Lieberman HA, Lachman L, Schwartz JB (1990) Pharmaceutical dosage forms: tablets. Marcel Dekker, New York, pp 118–233

    Google Scholar 

  • Majoros IJ, Thomas TP, Mehta CB, Baker JR Jr (2005) Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem 48:5892–5899

    Article  CAS  PubMed  Google Scholar 

  • Majoros IJ, Williams CR, Baker JR Jr (2008) Current dendrimer applications in cancer diagnosis and therapy. Curr Top Med Chem 8:1165–1179

    Article  CAS  PubMed  Google Scholar 

  • McLeod AD, Friend DR, Tozer TN (1993) Synthesis and chemical stability of glucocorticoid–dextran esters: potential prodrugs for colon-specific delivery. Int J Pharm 92:105–114

    Article  CAS  Google Scholar 

  • Mehvar R, Dann RO, Hoganson DA (2000) Kinetics of hydrolysis of dextran-methylprednisolone succinate, a macromolecular prodrug of methylprednisolone, in rat blood and liver lysosomes. J Control Release 68:53–61

    Article  CAS  Google Scholar 

  • Middleton JC, Tipton AJ (1998) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

    Article  Google Scholar 

  • Minko T, Khandare JJ, Jayant S (2007) Polymeric Drugs. In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering: from precise macromolecular synthesis to macroscopic material properties and application. Wiley-VCH, Weinheim, pp 2541–2595

    Google Scholar 

  • Mura P, Maestrelli F, Cirri M, Gonzalez Rodriguez ML, Rabasco Alvarez AM (2003) Development of enteric-coated pectin-based matrix tablets for colonic delivery of theophylline. J Drug Target 11:365–371

    Article  CAS  PubMed  Google Scholar 

  • Newcome GR, Moorefield CN, Keith JN, Baker GR, Escamilla GH (1994) Chemistry within a unimolecular micelle precursor: Boron superclusters by site- and depth-specific transformations of dendrimers. Angew Chem Int Ed 33:2413–2420

    Google Scholar 

  • Papp I, Dernedde J, Enders S, Haag R (2008) Modular synthesis of multivalent glycoarchitectures and their unique selectin binding behavior. Chem Commun 44:5851–5853

    Article  Google Scholar 

  • Park TG, Cohen S, Langer RS (1994) Controlled drug delivery using polymer/pluronic blends. US Patent No. 5330768 USA

    Google Scholar 

  • Pendri A, Martinez A, Xia J, Shorr RG, Greenwald RB (1995) Poly(ethylene glycol) fluorescent linkers. Bioconjug Chem 6:596–598

    Article  CAS  PubMed  Google Scholar 

  • Perez-Marcos B, Gutierrez C, Gomez-Amoza JL, Martinez-Pacheco R, Souto C, Concheiro A (1991) Usefulness of certain varieties of Carbopol in the formulation of hydrophilic furosemide matrices. Int J Pharm 67:113–121

    Article  CAS  Google Scholar 

  • Quadir MA, Radowski MR, Kratz F, Licha K, Hauff P, Haag R (2008) Dendritic multishell architectures for drug and dye transport. J Control Release: 132:289–294

    Article  CAS  Google Scholar 

  • Rihova B, Bilej M, Vetvicka V, Ulbrich K, Strohalm J, Kopecek J, Duncan R (1989) Biocompatibility of N-(2-hydroxypropyl) methacrylamide copolymers containing adriamycin. Immunogenicity, and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials 10:335–342

    Article  CAS  PubMed  Google Scholar 

  • Ross AC, MacRae RJ, Walther M, Stevens HN (2000) Chronopharmaceutical drug delivery from a pulsatile capsule device based on programmable erosion. J Pharm Pharmacol 52:903–909

    Article  CAS  PubMed  Google Scholar 

  • Roy P, Shahiwala A (2009) Multiparticulate formulation approach to pulsatile drug delivery: current perspectives. J Control Release 134:74–80

    Article  CAS  Google Scholar 

  • Santus C, Baker (1995) Osmotic drug delivery: a review of the patent literature. J Control Release 35:1–21

    Article  CAS  Google Scholar 

  • Shishu GN, Aggarwal N (2007) Stomach-specific drug delivery of 5-fluorouracil using floating alginate beads. AAPS PharmSciTech 8:48

    Article  Google Scholar 

  • Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24

    Article  PubMed  Google Scholar 

  • Smolensky MH, Peppas NA (2007) Chronobiology, drug delivery, and chronotherapeutics. Adv Drug Deliv Rev 59:828–851

    Article  CAS  PubMed  Google Scholar 

  • Stiribara SE, Frey H, Haag R (2002) Dendritic polymers in biomedical applications: from potential to clinical use in diagnosis and therapy. Angew Chem Int Ed 41:1329–1334

    Article  Google Scholar 

  • Streubel A, Siepmann J, Bodmeier R (2002) Floating microparticles based on low density foam powder. Int J Pharm 241:279–292

    Article  CAS  PubMed  Google Scholar 

  • Sunder A, Hanselmann R, Frey H, Mulhaupt R (1999) Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32:4240–4246

    Article  CAS  Google Scholar 

  • Sunder A, Mülhaupt R, Haag R, Frey H (2000) Hyperbranched polyether polyols: a modular approach to complex polymer architectures. Adv Mater 12:235–239

    Article  CAS  Google Scholar 

  • Tajarobi F, El-Sayed M, Rege BD, Polli JE, Ghandehari H (2001) Transport of poly amidoamine dendrimers across Madin-Darby canine kidney cells. Int J Pharm 215:263–267

    Article  CAS  PubMed  Google Scholar 

  • Takada K (1997) Controlled-release preparations. US Patent No 5,637,319, USA

    Google Scholar 

  • Tiainen J, Veiranto M, Suokas E, Tormala P, Waris T, Ninkovic M, Ashammakhi N (2002) Bioabsorbable ciprofloxacin-containing and plain self-reinforced polylactide-polyglycolide 80/20 screws: pullout strength properties in human cadaver parietal bones. J Craniofac Surg 13:427–433

    Article  PubMed  Google Scholar 

  • Tomalia DA, Fréchet JM (2005) Introduction to dendrimers and dendritic polymers. Prog Polym Sci 30:294–324

    Article  CAS  Google Scholar 

  • Türk H, Haag R, Alban S (2004) Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the complement system. Bioconjug Chem 15:162–167

    Article  PubMed  Google Scholar 

  • Türk H, Shukla A, Alves Rodrigues PC, Rehage H, Haag R (2007) Water-soluble dendritic core-shell-type architectures based on polyglycerol for solubilization of hydrophobic drugs. Chemistry 13:4187–4196

    Article  PubMed  Google Scholar 

  • Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198

    Article  CAS  PubMed  Google Scholar 

  • Ulbrich K, Etrych T, Chytil P, Jelinkova M, Rihova B (2003) HPMA copolymers with pH-controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor activity. J Control Release 87:33–47

    Article  CAS  Google Scholar 

  • Venuganti VV, Perumal OP (2008) Effect of poly(amidoamine) (PAMAM) dendrimer on skin permeation of 5-fluorouracil. Int J Pharm 361:230–238

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Kristensen J, Ruffner DE (1998) Delivery of antisense oligonucleotides using HPMA polymer: synthesis of thiol polymer and its conjugation to water-soluble molecules. Bioconjug Chem 9:749–757

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Kopeckova JP, Minko T, Nanayakkara V, Kopecek J (2000) Synthesis of starlike N-(2-hydroxypropyl)methacrylamide copolymers: potential drug carriers. Biomacromolecules 1:313–319

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Eshraghi J, Fassihi R (1999) A new intragastric delivery system for the treatment of Helicobacter pylori associated gastric ulcer: in vitro evaluation. J Control Release 57:215–222

    Article  CAS  Google Scholar 

  • Zhou J, Wu J, Hafdi N, Behr J-P, Erbacher P, Peng L (2006) PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun 14:2362–2364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Haag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khandare, J., Haag, R. (2010). Pharmaceutically Used Polymers: Principles, Structures, and Applications of Pharmaceutical Delivery Systems. In: Schäfer-Korting, M. (eds) Drug Delivery. Handbook of Experimental Pharmacology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00477-3_8

Download citation

Publish with us

Policies and ethics