Skip to main content

Needle-Free Vaccine Injection

  • Chapter
  • First Online:
Drug Delivery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 197))

Abstract

Millions of people die each year from infectious disease, with a main stumbling block being our limited ability to deliver vaccines to optimal sites in the body. Specifically, effective methods to deliver vaccines into outer skin and mucosal layers – sites with immunological, physical and practical advantages that cannot be targeted via traditional delivery methods – are lacking. This chapter investigates the challenge for physical delivery approaches that are primarily needle-free. We examine the skin’s structural and immunogenic properties in the context of the physical cell targeting requirements of the viable epidermis, and we review selected current physical cell targeting technologies engineered to meet these needs: needle and syringe, diffusion patches, liquid jet injectors, and microneedle arrays/patches. We then focus on biolistic particle delivery: we first analyze engineering these systems to meet demanding clinical needs, we then examine the interaction of biolistic devices with the skin, focusing on the mechanical interactions of ballistic impact and cell death, and finally we discuss the current clinical outcomes of one key application of engineered delivery devices – DNA vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Particle cross-sectional area

APC (APCs):

Antigen-presenting cell(s)

CST:

Contoured shock tube

CHMP:

Committee for Medicinal Products for Human Use

D :

Particle resistive force

dDCs:

Dermal dendritic cells

DEM:

Discrete element model

DGV:

Doppler global velocimetry

GMT:

Geometric mean titer

HIV:

Human immunodeficiency virus

PIV:

Particle image velocimetry

RH:

Relative humidity

SC:

Stratum corneum

VE:

Viable epidermis

V :

Particle velocity

v i,ve :

Viable epidermis boundary

ρ t :

Density of target

σ :

Yield stress of target

References

  • Alexander MY, Akhurst RJ (1995) Liposome-medicated gene transfer and expression via the skin. Hum Mol Genet 4:2279–2285

    Article  CAS  PubMed  Google Scholar 

  • Babiuk S, Baca-Estrada M, Babiuk LA, Ewen C, Foldvari M (2000) Cutaneous vaccination: the skin as an immunologically active tissue and the challenge of antigen delivery. J Control Release 66:199–214

    Article  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  • Bauer J, Bahmer FA, Worl J, Neuhuber W, Schuler G, Fartasch M (2001) A strikingly constant ratio exists between Langerhans cells and other epidermal cells in human skin. A stereologic study using the optical disector method and the confocal laser scanning microscope. J Invest Dermatol 116:313–318

    Article  CAS  PubMed  Google Scholar 

  • Bellhouse BJ, Sarphie DF, Greenford JC (1994) Needle-less syringe using supersonic gas flow for particle delivery. International patent WO94/24263

    Google Scholar 

  • Blank IH, Moloney J, 3rd, Emslie AG, Simon I, Apt C (1984) The diffusion of water across the stratum corneum as a function of its water content. J Invest Dermatol 82:188–94

    Google Scholar 

  • Berman B, Chen VL, France DS, Dotz WI, Petroni G (1983) Anatomical mapping of epidermal Langerhans cell densities in adults. Br J Dermatol 109:553–558

    Article  CAS  PubMed  Google Scholar 

  • Bremseth DL, Pass F (2001) Delivery of insulin by jet injection: recent observations. Diabetes Technol Ther 3:225–232

    Article  CAS  PubMed  Google Scholar 

  • Burkoth TL, Bellhouse BJ, Hewson G, Longridge DJ, Muddle AG, Sarphie DF (1999) Transdermal and transmucosal powdered drug delivery. Crit Rev Ther Drug Carrier Syst 16:331–384

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Endres RL, Erickson CA, Weis KF, McGregor MW, Kawaoka Y, Payne LG (2000) Epidermal immunization by a needle-free powder delivery technology: immunogenicity of influenza vaccine and protection in mice. Nat Med 6:1187–1190

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Maa YF, Haynes JR (2002) Needle-free epidermal powder immunization. Expert Rev Vaccines 1:265–276

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Yuan J, Wang Y, Silvers WK (1985) Distribution of ATPase-positive Langerhans cells in normal adult human skin. Br J Dermatol 113:707–711

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Prow TW, Crichton ML, Jenkins DWK, Roberts MS, Frazer IH, Fernando GJP, Kendall MAF (2009) Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release 3:212–220

    Google Scholar 

  • Chen XF, Prow TW, Crichton M, Fernando G, Kendall MAF (2008) Novel coating of Micro-nanoprojections patches for targeted vaccine delivery to skin. In: International Conference on Nanoscience and Nanotechnology, Melbourne Convention Centre, Melbourne, Australia. IEEE Press, pp 105–108

    Google Scholar 

  • Christensen MS, Hargens CW 3rd, Nacht S, Gans EH (1977) Viscoelastic properties of intact human skin: instrumentation, hydration effects, and the contribution of the stratum corneum. J Invest Dermatol 69:282–286

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Mumper RJ (2001) Dendritic cell-targeted genetic vaccines engineered from novel microemulsion precursors. Mol Ther 3:S352

    Google Scholar 

  • Dehn J (1976) A unified theory of penetration. Int J Impact Eng 5:239–248

    Article  Google Scholar 

  • Dobrev H (1996) In vivo noninvasive study of the mechanical properties of the human skin after single application of topical corticosteroids. Folia Med (Plovdiv) 38:11–17

    CAS  Google Scholar 

  • Domashenko A, Gupta S, Cotsarelis G (2000) Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat Biotechnol 18:420–423

    Article  CAS  PubMed  Google Scholar 

  • Drape RJ, Macklin MD, Barr LJ, Jones S, Haynes JR, Dean HJ (2006) Epidermal DNA vaccine for influenza is immunogenic in humans. Vaccine 24:4475–4481

    Article  CAS  PubMed  Google Scholar 

  • Duck FA (1990) Physical properties of tissue. Academic Press, London

    Google Scholar 

  • Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3:199–209

    Article  CAS  PubMed  Google Scholar 

  • Furth PA, Shamay A, Hennighausen L (1995) Gene transfer into mammalian cells by jet injection. Hybridoma 14:149–152

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Prausnitz MR (2007) Coating formulations for microneedles. Pharm Res 24:1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Givens B, Oberle S, Lander J (1993) Taking the jab out of needles. Can Nurse 89:37–40

    CAS  PubMed  Google Scholar 

  • Glenn GM, Kenney RT, Ellingsworth LR, Frech SA, Hammond SA, Zoeteweij JP (2003) Transcutaneous immunization and immunostimulant strategies: capitalizing on the immunocompetence of the skin. Expert Rev Vaccines 2:253–267

    Article  CAS  PubMed  Google Scholar 

  • Guerena-Burgueno F, Hall ER, Taylor DN, Cassels FJ, Scott DA, Wolf MK, Roberts ZJ, Nesterova GV, Alving CR, Glenn GM (2002) Safety and immunogenicity of a prototype enterotoxigenic Escherichia coli vaccine administered transcutaneously. Infect Immun 70:1874–1880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardy MP, Kendall MAF (2005) Mucosal deformation from an impinging transonic gas jet and the ballistic impact of microparticles. Phys Med Biol 50:4567–4580

    Article  CAS  PubMed  Google Scholar 

  • Hoath SB, Leahy DG (2002) Formation and function of the stratum corneum. In: Marks R, Lévêque J-L, Voegeli R (eds) The essential stratum corneum. Taylor & Francis Group, London, p 31

    Chapter  Google Scholar 

  • Hopewell JW (1990) The skin: its structure and response to ionizing radiation. Int J Radiat Biol 57:751–773

    Article  CAS  PubMed  Google Scholar 

  • Kendall M (2006) Engineering of needle-free physical methods to target epidermal cells for DNA vaccination. Vaccine 24:4651–4656

    Article  CAS  PubMed  Google Scholar 

  • Kendall M, Mitchell T, Wrighton-Smith P (2004a) Intradermal ballistic delivery of micro-particles into excised human skin for pharmaceutical applications. J Biomech 37:1733–1741

    Article  PubMed  Google Scholar 

  • Kendall M, Mitchell TJ, Costigan G, Armitage M, Lenzo JC, Thomas JA, von Garnier C, Zosky GR, Turner DJ, Stumbles PA, Sly PD, Holt PG, Thomas WR (2006) Downregulation of IgE antibody and allergic responses in the lung by epidermal biolistic microparticle delivery. J Allergy Clin Immunol 117:275–282

    Article  CAS  PubMed  Google Scholar 

  • Kendall M, Rishworth S, Carter F, Mitchell T (2004b) Effects of relative humidity and ambient temperature on the ballistic delivery of micro-particles to excised porcine skin. J Invest Dermatol 122:739–746

    Article  CAS  PubMed  Google Scholar 

  • Kendall MA, Chong YF, Cock A (2007) The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery. Biomaterials 28:4968–4977

    Article  CAS  PubMed  Google Scholar 

  • Kendall MAF (2002) The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system. Shock Waves 12:22–30

    Google Scholar 

  • Kendall MAF, Quinlan NJ, Thorpe SJ, Ainsworth RW, Bellhouse BJ (2004c) Measurements of the gas and particle flow within a converging–diverging nozzle for high speed powdered vaccine and drug delivery. Exp Fluids 37:128–136

    Article  CAS  Google Scholar 

  • Lesinski GB, Smithson SL, Srivastava N, Chen D, Widera G, Westerink MA (2001) A DNA vaccine encoding a peptide mimic of Streptococcus pneumoniae serotype 4 capsular polysaccharide induces specific anti-carbohydrate antibodies in Balb/c mice. Vaccine 19:1717–1726

    Article  CAS  PubMed  Google Scholar 

  • Li L, Hoffman RM (1995) The feasibility of targeted selective gene therapy of the hair follicle. Nat Med 1:705–706

    Article  PubMed  Google Scholar 

  • Liu LJ, Watabe S, Yang J, Hamajima K, Ishii N, Hagiwara E, Onari K, Xin KQ, Okuda K (2001) Topical application of HIV DNA vaccine with cytokine-expression plasmids induces strong antigen-specific immune responses. Vaccine 20:42–48

    Article  PubMed  Google Scholar 

  • Liu Y, Kendall MAF (2004a) Numerical simulation of heat transfer from a transonic jet impinging on skin for needle-free powdered drug and vaccine delivery. Proc Inst Mech Eng – Part C – J Mech Eng Sci 218:1373–1383

    Article  Google Scholar 

  • Liu Y, Kendall MAF (2004b) Numerical study of a transient gas and particle flow in a high-speed needle-free ballistic particulate vaccine delivery system. J Mech Med Biol 4:559–578

    Article  Google Scholar 

  • Liu Y, Truong NK, Kendall MA, Bellhouse BJ (2007) Characteristics of a micro-biolistic system for murine immunological studies. Biomed Microdevices 9:465–474

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Federoff HJ, Wang Y, Goldsmith LA, Scott G (1997) Topical application of viral vectors for epidermal gene transfer. J Invest Dermatol 108:803–808

    Article  CAS  PubMed  Google Scholar 

  • MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, Chattergoon MA, Baine Y, Higgins TJ, Ciccarelli RB, Coney LR, Ginsberg RS, Weiner DB (1998) First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis 178:92–100

    Article  CAS  PubMed  Google Scholar 

  • MacGregor RR, Ginsberg R, Ugen KE, Baine Y, Kang CU, Tu XM, Higgins T, Weiner DB, Boyer JD (2002) T-cell responses induced in normal volunteers immunized with a DNA-based vaccine containing HIV-1 env and rev. AIDS 16:2137–2143

    Article  CAS  PubMed  Google Scholar 

  • Marrion M, Kendall MAF, Liu Y (2005) The gas-dynamic effects of a hemisphere-cylinder obstacle in a shock-tube driver. Exp Fluids 38:319–327

    Article  CAS  Google Scholar 

  • Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, Daddona PE (2002) Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19:63–70

    Article  CAS  PubMed  Google Scholar 

  • McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, Prausnitz MR (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA 100:13755–13760

    Article  CAS  PubMed  Google Scholar 

  • McKinney EC, Streilein JW (1989) On the extraordinary capacity of allogeneic epidermal Langerhans cells to prime cytotoxic T cells in vivo. J Immunol 143:1560–1564

    CAS  PubMed  Google Scholar 

  • Menton DN, Eisen AZ (1971) Structure and organization of mammalian stratum corneum. J Ultrastruct Res 35:247–264

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG (2002) Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 8:415–419

    Article  CAS  PubMed  Google Scholar 

  • Mitchell T (2003) The ballistics of micro-particles into the mucosa and skin. DPhill Thesis Engineering science, University of Oxford, Oxford

    Google Scholar 

  • Mitchell TJ, Kendall MAF, Bellhouse BJ (2003) A ballistic study of micro-particle penetration to the oral mucosa. Int J Impact Eng 28:581–599

    Article  Google Scholar 

  • Mumper RJ, Ledebur HC Jr (2001) Dendritic cell delivery of plasmid DNA. Applications for controlled genetic immunization. Mol Biotechnol 19:79–95

    Article  CAS  PubMed  Google Scholar 

  • Nagao K, Ginhoux F, Leitner WW, Motegi S, Bennett CL, Clausen BE, Merad M, Udey MC (2009) Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci USA 106:3312–3317

    Article  CAS  PubMed  Google Scholar 

  • Nemes Z, Steinert PM (1999) Bricks and mortar of the epidermal barrier. Exp Mol Med 31:5–19

    Article  CAS  PubMed  Google Scholar 

  • Nicolopoulos CS, Giannoudis PV, Glaros KD, Barbenel JC (1998) In vitro study of the failure of skin surface after influence of hydration and preconditioning. Arch Dermatol Res 290:638–640

    Article  CAS  PubMed  Google Scholar 

  • Numahara T, Tanemura M, Nakagawa T, Takaiwa T (2001) Spatial data analysis by epidermal Langerhans cells reveals an elegant system. J Dermatol Sci 25:219–228

    Article  CAS  PubMed  Google Scholar 

  • Papir YS, Hsu KH, Wildnauer RH (1975) The mechanical properties of stratum corneum I. The effect of water and ambient temperature on the tensile properties of newborn rat stratum corneum. Biochim Biophys Acta 399:170–180

    Article  CAS  PubMed  Google Scholar 

  • Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B (2007) The dermis contains langerin + dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med 204:3119–3131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prow TW, Chen XF, Crichton M, Tiwari Y, Gradissi F, Raphaelli K, Mahony D, Fernando G, Roberts MS, Kendall MAF (2008) Targeted epidermal delivery of vaccines from coated micro-nanoprojection patches. In: International Conference on Nanoscience and Nanotechnology. IEEE, Melbourne Convention Centre, Melbourne, Australia, pp 125–128

    Google Scholar 

  • Quinlan NJ, Kendall MAF, Bellhouse BJ, Ainsworth RW (2001) Investigations of gas and particle dynamics in first generation needle-free drug delivery devices. Int J Shock Waves 10:395–404

    Article  Google Scholar 

  • Raju PA, McSloy N, Truong NK, Kendall MA (2006) Assessment of epidermal cell viability by near infrared multi-photon microscopy following ballistic delivery of gold micro-particles. Vaccine 24:4644–4647

    Article  CAS  PubMed  Google Scholar 

  • Rawlings A, Harding C, Watkinson A, Banks J, Ackerman C, Sabin R (1995) The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res 287:457–464

    Article  CAS  PubMed  Google Scholar 

  • Roberts LK, Barr LJ, Fuller DH, McMahon CW, Leese PT, Jones S (2005) Clinical safety and efficacy of a powdered hepatitis B nucleic acid vaccine delivered to the epidermis by a commercial prototype device. Vaccine 23:4867–4878

    Article  CAS  PubMed  Google Scholar 

  • Rottinghaus ST, Poland GA, Jacobson RM, Barr LJ, Roy MJ (2003) Hepatitis B DNA vaccine induces protective antibody responses in human non-responders to conventional vaccination. Vaccine 21:4604–4608

    Article  CAS  PubMed  Google Scholar 

  • Roy MJ, Wu MS, Barr LJ, Fuller JT, Tussey LG, Speller S, Culp J, Burkholder JK, Swain WF, Dixon RM, Widera G, Vessey R, King A, Ogg G, Gallimore A, Haynes JR, Heydenburg Fuller D (2000) Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19:764–778

    Article  CAS  PubMed  Google Scholar 

  • Sanford JC, Klein MC (1987) Delivery of substances into cells and tissues using a particle bombardment process. Particulate Sci Tech 5:27–37

    Article  CAS  Google Scholar 

  • Shi Z, Curiel DT, Tang DC (1999) DNA-based non-invasive vaccination onto the skin. Vaccine 17:2136–2141

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Zeng M, Yang G, Siegel F, Cain LJ, van Kampen KR, Elmets CA, Tang DC (2001) Protection against tetanus by needle-free inoculation of adenovirus-vectored nasal and epicutaneous vaccines. J Virol 75:11474–11482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sintov AC, Krymberk I, Daniel D, Hannan T, Sohn Z, Levin G (2003) Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J Control Release 89:311–320

    Article  CAS  Google Scholar 

  • Stenn KS, Goldenhersh MA, Trepeta RW (1992) Structure and functions of the skin. In: Symmers WSC (ed) The skin, Vol 9. New York, Churchill Livingstone, pp 1–14

    Google Scholar 

  • Tang DC, Shi Z, Curiel DT (1997) Vaccination onto bare skin. Nature 388:729–730

    Article  CAS  PubMed  Google Scholar 

  • Timares L, Takashima A, Johnston SA (1998) Quantitative analysis of the immunopotency of genetically transfected dendritic cells. Proc Natl Acad Sci USA 95:13147–13152

    Article  CAS  PubMed  Google Scholar 

  • Truong NK, Liu Y, Kendall MAF (2006) Gas-particle dynamics characterisation of a preclinical contoured shock tube for vaccine and drug delivery. Shock Waves 15:149–164

    Article  Google Scholar 

  • Watabe S, Xin KQ, Ihata A, Liu LJ, Honsho A, Aoki I, Hamajima K, Wahren B, Okuda K (2001) Protection against influenza virus challenge by topical application of influenza DNA vaccine. Vaccine 19:4434–4444

    Article  CAS  PubMed  Google Scholar 

  • WHO (1999) Safety of injections: facts and figures. http://www.who.int/inf-fs/en/fact232.html World Health Organization. Office of Press and Public Relations

  • Widera G, Austin M, Rabussay D, Goldbeck C, Barnett SW, Chen M, Leung L, Otten GR, Thudium K, Selby MJ, Ulmer JB (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635–4640

    CAS  PubMed  Google Scholar 

  • Wildnauer RH, Bothwell JW, Douglass AB (1971) Stratum corneum biomechanical properties I. Influence of relative humidity on normal and extracted human stratum corneum. J Invest Dermatol 56:72–78

    Article  CAS  PubMed  Google Scholar 

  • Zucchelli S, Capone S, Fattori E, Folgori A, Di Marco A, Casimiro D, Simon AJ, Laufer R, La Monica N, Cortese R, Nicosia A (2000) Enhancing B- and T-cell immune response to a hepatitis C virus E2 DNA vaccine by intramuscular electrical gene transfer. J Virol 74:11598–11607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. F. Kendall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kendall, M.A.F. (2010). Needle-Free Vaccine Injection. In: Schäfer-Korting, M. (eds) Drug Delivery. Handbook of Experimental Pharmacology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00477-3_7

Download citation

Publish with us

Policies and ethics