Skip to main content

Lipid Nanoparticles: Effect on Bioavailability and Pharmacokinetic Changes

  • Chapter
  • First Online:
Book cover Drug Delivery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 197))

Abstract

The main aim of pharmaceutical technology research is the design of successful formulations for effective therapy, taking into account several issues including therapeutic requirements and patient compliance. In this regard, several achievements have been reported with colloidal carriers, in particular with lipid nanoparticles, due to their unique physicochemical properties. For several years these carriers have been showing potential success for several administration routes, namely oral, dermal, parenteral, and, more recently, for pulmonary and brain targeting. The present chapter provides a review of the use of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) to modify the release profile and the pharmacokinetic parameters of active pharmaceutical ingredients (APIs) incorporated in these lipid matrices, aiming to modify the API bioavailability, either upwards or downwards depending on the therapeutic requirement. Definitions of the morphological characteristics, surface properties, and polymorphic structures will also be given, emphasizing their influence on the incorporation parameters of the API, such as yield of production, loading capacity, and encapsulation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

API:

Active pharmaceutical ingredient

AUC:

Area under the curve

BBB:

Blood–brain barrier

BSC:

Biopharmaceutical classification system

CNS:

Central nervous system

DSC:

Differential scanning calorimetry

EE:

Encapsulation efficiency

ESR:

Electron spin resonance

FFF:

Field flow fractionation

GIT:

Gastrointestinal tract

HLB:

Hydrophilic–lipophilic balance

HPH:

High pressure homogenization

IES:

Inter-endothelial cell slits

LC:

Loading capacity

LD:

Laser diffractometry

LDL:

Low density lipoproteins

LHRH:

Luteinizing hormone releasing hormone

MPS:

Mononuclear phagocytic system

NLC:

Nanostructured lipid carriers

NMR:

Nuclear magnetic resonance

PCS:

Photon correlation spectroscopy

PEG:

Polyethylene glycol

RES:

Reticulo-endothelial system

SAXS:

Small angle X-ray scattering

SEM:

Scanning electron microscopy

SFEE:

Supercritical fluid extraction of emulsion

SLN:

Solid lipid nanoparticles

TEM:

Transmission electron microscopy

TPGS:

d-α-Tocopheryl polyethylene glycol 1,000 succinate

WAXS:

Wide angle X-ray scattering

YP:

Yield of production

References

  • Abu-Dahab R, Schäfer UF, Lehr CM (2001) Lectin-functionalized liposomes for pulmonary drug delivery: effect of nebulization on stability and bioadhesion. Eur J Pharm Sci 14:37–46

    CAS  PubMed  Google Scholar 

  • Almeida AJ, Runge S, Müller RH (1997) Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm 149:255–265

    CAS  Google Scholar 

  • Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490

    CAS  PubMed  Google Scholar 

  • Andrysek T (2003) Impact of physical properties of formulations on bioavailability of active substance: current and novel drugs with cyclosporine. Mol Immunol 39:1061–1065

    CAS  PubMed  Google Scholar 

  • Andrysek T (2006) Excipients and their role in absorption: Influencing bioavailability of cyclosporine by triglycerides and polyglycerol esters. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150:227–233

    CAS  PubMed  Google Scholar 

  • Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates-a review. J Control Release 128:185–199

    CAS  Google Scholar 

  • Anton N, Gayet P, Benoit JP, Saulnier P (2007) Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. Int J Pharm 344:44–52

    CAS  PubMed  Google Scholar 

  • Badruddoja MA, Black KL (2006) Improving the delivery of therapeutic agents to CNS neoplasms: a clinical review. Front Biosci 11:1466–1478

    CAS  PubMed  Google Scholar 

  • Bargoni A, Cavalli R, Caputo O, Fundaro A, Gasco MR, Zara GP (1998) Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm Res 15:745–750

    CAS  PubMed  Google Scholar 

  • Bargoni A, Cavalli R, Zara GP, Fundaro A, Caputo O, Gasco MR (2001) Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II–tissue distribution. Pharmacol Res 43:497–502

    CAS  PubMed  Google Scholar 

  • Batrakova EV, Li S, Miller DW, Kabanov AV (1999) Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharm Res 16:1366–1372

    CAS  PubMed  Google Scholar 

  • Battaglia L, Trotta M, Gallarate M, Carlotti ME, Zara GP, Bargoni A (2007) Solid lipid nanoparticles formed by solvent-in-water emulsion-diffusion technique: development and influence on insulin stability. J Microencapsul 24:660–672

    CAS  PubMed  Google Scholar 

  • Bekerman T, Golenser J, Domb A (2004) Cyclosporin nanoparticulate lipospheres for oral administration. J Pharm Sci 93:1264–1270

    CAS  PubMed  Google Scholar 

  • Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59:454–477

    CAS  PubMed  Google Scholar 

  • Bondi ML, Azzolina A, Craparo EF, Lampiasi N, Capuano G, Giammona G, Cervello M (2007) Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. J Drug Target 15:295–301

    CAS  PubMed  Google Scholar 

  • Bondi ML, Fontana G, Carlisi B, Giammona G (2003) Preparation and characterization of solid lipid nanoparticles containing cloricromene. Drug Deliv 10:245–250

    CAS  PubMed  Google Scholar 

  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdörster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    PubMed Central  PubMed  Google Scholar 

  • Boyd B, Noymer P, Liu K, Okikawa J, Hasegawa D, Warren S, Taylor G, Ferguson E, Schuster J, Farr S, Gonda I (2004) Effect of gender and device mouthpiece shape on bolus insulin aerosol delivery using the AERx pulmonary delivery system. Pharm Res 21:1776–1782

    CAS  PubMed  Google Scholar 

  • Brioschi A, Zara GP, Calderoni S, Gasco MR, Mauro A (2008) Cholesterylbutyrate solid lipid nanoparticles as a butyric acid prodrug. Molecules 13:230–254

    CAS  PubMed  Google Scholar 

  • Bummer PM (2004) Physical chemical considerations of lipid-based oral drug delivery–solid lipid nanoparticles. Crit Rev Ther Drug Carrier Syst 21:1–20

    CAS  PubMed  Google Scholar 

  • Bunjes H, Koch MH, Westesen K (2003) Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J Pharm Sci 92:1509–1520

    CAS  PubMed  Google Scholar 

  • Bunjes H, Koch MHJ, Westesen K (2000) Effect of particle size on colloidal solid triglycerides. Langmuir 16:5234–5241

    Google Scholar 

  • Bunjes H, Westesen K, Koch MHJ (1996) Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int J Pharm 129:159–173

    CAS  Google Scholar 

  • Castelli F, Puglia C, Sarpietro MG, Rizza L, Bonina F (2005) Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. Int J Pharm 304:231–238

    CAS  PubMed  Google Scholar 

  • Cavalli R, Caputo O, Carlotti ME, Trotta M, Scarnecchia C, Gasco MR (1997) Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm 148:47–54

    CAS  Google Scholar 

  • Cavalli R, Caputo O, Gasco MR (2000a) Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur J Pharm Sci 10:305–309

    CAS  PubMed  Google Scholar 

  • Cavalli R, Caputo O, Marengo E, Pattarino F, Gasco MR (1998) The effect of the components of microemulsions on both size and crystalline structure of solid lipid nanoparticles (SLN) containing a series of model molecules. Pharmazie 53:392–396

    CAS  Google Scholar 

  • Cavalli R, Gasco MR, Barresi AA, Rovero G (2001) Evaporative drying of aqueous dispersions of solid lipid nanoparticles. Drug Dev Ind Pharm 27:919–924

    CAS  PubMed  Google Scholar 

  • Cavalli R, Zara GP, Caputo O, Bargoni A, Fundaro A, Gasco MR (2000b) Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats. Part I – A pharmacokinetic study. Pharmacological Research 42:541–545

    CAS  PubMed  Google Scholar 

  • Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S (2007) Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev 59:444–453

    CAS  PubMed  Google Scholar 

  • Chen DB, Yang TZ, Lu WL, Zhang Q (2001) In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull 49:1444–1447

    CAS  PubMed  Google Scholar 

  • Chen Y, Dalwadi G, Benson HA (2004) Drug delivery across the blood-brain barrier. Curr Drug Deliv 1:361–376

    CAS  PubMed  Google Scholar 

  • Cornford EM, Hyman S (1999) Blood-brain barrier permeability to small and large molecules. Adv Drug Deliv Rev 36:145–163

    CAS  PubMed  Google Scholar 

  • Cortesi R, Esposito E, Luca G, Nastruzzi C (2002) Production of lipospheres as carriers for bioactive compounds. Biomaterials 23:2283–2294

    CAS  PubMed  Google Scholar 

  • Dailey LA, Schmehl T, Gessler T, Wittmar M, Grimminger F, Seeger W, Kissel T (2003) Nebulization of biodegradable nanoparticles: impact of nebulizer technology and nanoparticle characteristics on aerosol features. J Control Release 86:131–144

    CAS  Google Scholar 

  • de Sousa ARS, Calderone M, Rodier E, Fages J, Duarte CMM (2006) Solubility of carbon dioxide in three lipid-based biocarriers. J Supercrit Fluids 39:13–19

    Google Scholar 

  • de Sousa ARS, Simplicio AL, de Sousa HC, Duarte CMM (2007) Preparation of glyceryl mono stearate-based particles by PGSS® – application to caffeine. J Supercrit Fluids 43:120–125

    Google Scholar 

  • des Rieux A, Fievez V, Garinot M, Schneider Y-J, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    Google Scholar 

  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845

    CAS  PubMed  Google Scholar 

  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573

    CAS  PubMed  Google Scholar 

  • Dintaman JM, Silverman JA (1999) Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res 16:1550–1556

    CAS  PubMed  Google Scholar 

  • Dressman JB, Reppas C (2000) In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci 11(Suppl 2):S73–S80

    CAS  PubMed  Google Scholar 

  • El-Harati AA, Charcosset C, Fessi H (2006) Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor. Pharm Dev Technol 11:153–157

    CAS  PubMed  Google Scholar 

  • Fahr A (1993) Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet 24:472–495

    CAS  PubMed  Google Scholar 

  • Fontana G, Maniscalco L, Schillaci D, Cavallaro G, Giammona G (2005) Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug Deliv 12:385–392

    CAS  PubMed  Google Scholar 

  • Freitas C, Müller RH (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm 168:221–229

    CAS  Google Scholar 

  • Freitas C, Müller RH (1999a) Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm 47:125–132

    CAS  PubMed  Google Scholar 

  • Freitas C, Müller RH (1999b) Stability determination of solid lipid nanoparticles (SLN™) in aqueous dispersion after addition of electrolyte. J Microencapsul 16:59–71

    CAS  PubMed  Google Scholar 

  • Fundaro A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR (2000) Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 42:337–343

    CAS  PubMed  Google Scholar 

  • Furumoto K, Nagayama S, Ogawara K, Takakura Y, Hashida M, Higaki K, Kimura T (2004) Hepatic uptake of negatively charged particles in rats: possible involvement of serum proteins in recognition by scavenger receptor. J Control Release 97:133–141

    CAS  Google Scholar 

  • Gallarate M, Trotta M, Battaglia L, Chirio D (2008) Preparation of solid lipid nanoparticles from W/O/W emulsions: Preliminary studies on insulin encapsulation. J Microencapsul 3:1–9

    Google Scholar 

  • Garcia-Fuentes M, Torres D, Alonso MJ (2003) Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf B-Biointerfaces 27:159–168

    CAS  Google Scholar 

  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P (2005) Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 298:274–292

    CAS  PubMed  Google Scholar 

  • Gibson L (2007) Lipid-based excipients for oral drug delivery. In: Hauss DJ (ed) Oral lipid-based formulations: enhancing the bioavailability of poorly water-soluble drugs. Informa Healthcare, Inc., New York, pp 43–51

    Google Scholar 

  • Gohla SH, Dingler A (2001) Scaling up feasibility of the production of solid lipid nanoparticles (SLN™). Pharmazie 56:61–63

    CAS  PubMed  Google Scholar 

  • Göppert TM, Müller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–187

    PubMed  Google Scholar 

  • Groom AC (1987) The Microcirculatory Society Eugene M. Landis award lecture. Microcirculation of the spleen: new concepts, new challenges. Microvasc Res 34:269–289

    CAS  PubMed  Google Scholar 

  • Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Tubic Grozdanis M, Lenhardt T, Langguth P (2007) Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev 59:419–426

    CAS  PubMed  Google Scholar 

  • Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    CAS  PubMed  Google Scholar 

  • Hauss DJ (2007) Oral lipid-based formulations. Adv Drug Deliv Rev 59:667–676

    CAS  PubMed  Google Scholar 

  • Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2:12

    Google Scholar 

  • Hou D, Xie C, Huang K, Zhu C (2003) The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 24:1781–1785

    CAS  PubMed  Google Scholar 

  • Hu FQ, Hong Y, Yuan H (2004a) Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm 273:29–35

    CAS  PubMed  Google Scholar 

  • Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S (2005) Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces 45:167–173

    CAS  PubMed  Google Scholar 

  • Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S (2006) Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm 314:83–89

    CAS  PubMed  Google Scholar 

  • Hu FQ, Wu M, Yuan H, Zhang HH (2004b) A novel preparation of solid lipid nanoparticles with cyclosporin A for prolonged drug release. Pharmazie 59:683–685

    CAS  PubMed  Google Scholar 

  • Hu FQ, Yuan H, Zhang HH, Fang M (2002) Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm 239:121–128

    CAS  PubMed  Google Scholar 

  • Hu FQ, Zhang Y, Du YZ, Yuan H (2008) Nimodipine loaded lipid nanospheres prepared by solvent diffusion method in a drug saturated aqueous system. Int J Pharm 348:146–152

    CAS  PubMed  Google Scholar 

  • Huang YY, Wang CH (2006) Pulmonary delivery of insulin by liposomal carriers. J Control Release 113:9–14

    CAS  Google Scholar 

  • Hussain A, Arnold JJ, Khan MA, Ahsan F (2004) Absorption enhancers in pulmonary protein delivery. J Control Release 94:15–24

    CAS  Google Scholar 

  • Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    CAS  PubMed  Google Scholar 

  • Jayagopal A, Sussman EM, Shastri VP (2008) Functionalized solid lipid nanoparticles for transendothelial delivery. IEEE Trans Nanobioscience 7:28–34

    CAS  PubMed  Google Scholar 

  • Jenning V, Gohla SH (2001) Encapsulation of retinoids in solid lipid nanoparticles (SLN). J Microencapsul 18:149–158

    CAS  PubMed  Google Scholar 

  • Jenning V, Schäfer-Korting M, Gohla S (2000) Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release 66:115–126

    CAS  Google Scholar 

  • Johanson CE, Duncan JA, Stopa EG, Baird A (2005) Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res 22:1011–1037

    CAS  PubMed  Google Scholar 

  • Jores K, Haberland A, Wartewig S, Mäder K, Mehnert W (2005) Solid lipid nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and Raman spectroscopy. Pharm Res 22:1887–1897

    CAS  PubMed  Google Scholar 

  • Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mäder K (2004) Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release 95:217–227

    CAS  Google Scholar 

  • Jores K, Mehnert W, Mäder K (2003) Physicochemical investigations on solid lipid nanoparticles and on oil-loaded solid lipid nanoparticles: a nuclear magnetic resonance and electron spin resonance study. Pharm Res 20:1274–1283

    CAS  PubMed  Google Scholar 

  • Joshi M, Patravale V (2008) Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm 346:124–132

    CAS  PubMed  Google Scholar 

  • Karathanasis E, Ayyagari AL, Bhavane R, Bellamkonda RV, Annapragada AV (2005) Preparation of in vivo cleavable agglomerated liposomes suitable for modulated pulmonary drug delivery. J Control Release 103:159–175

    CAS  Google Scholar 

  • Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127:97–109

    CAS  Google Scholar 

  • Kawashima Y, Yamamoto H, Takeuchi H, Fujioka S, Hino T (1999) Pulmonary delivery of insulin with nebulized dl-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J Control Release 62:279–287

    CAS  Google Scholar 

  • Koziara JM, Lockman PR, Allen DD, Mumper RJ (2003) In situ blood-brain barrier transport of nanoparticles. Pharm Res 20:1772–1778

    CAS  PubMed  Google Scholar 

  • Koziara JM, Lockman PR, Allen DD, Mumper RJ (2006) The blood-brain barrier and brain drug delivery. J Nanosci Nanotechnol 6:2712–2735

    CAS  PubMed  Google Scholar 

  • Kreuter J (1994) Nanoparticles. Marcel Dekker, New York, pp 219–342

    Google Scholar 

  • Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81

    CAS  PubMed  Google Scholar 

  • Kristl J, Volk B, Ahlin P, Gombac K, Sentjurc M (2003) Interactions of solid lipid nanoparticles with model membranes and leukocytes studied by EPR. Int J Pharm 256:133–140

    CAS  PubMed  Google Scholar 

  • Kuntsche J, Bunjes H (2007) Influence of preparation conditions and heat treatment on the properties of supercooled smectic cholesteryl myristate nanoparticles. Eur J Pharm Biopharm 67:612–620

    CAS  PubMed  Google Scholar 

  • Langguth P, Hanafy A, Frenzel D, Grenier P, Nhamias A, Ohlig T, Vergnault G, Spahn-Langguth H (2005) Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm 31:319–329

    CAS  PubMed  Google Scholar 

  • Lippacher A, Müller RH, Mäder K (2000) Investigation on the viscoelastic properties of lipid based colloidal drug carriers. Int J Pharm 196:227–230

    CAS  PubMed  Google Scholar 

  • Lippacher A, Müller RH, Mäder K (2002) Semisolid SLN™ dispersions for topical application: influence of formulation and production parameters on viscoelastic properties. Eur J Pharm Biopharm 53:155–160

    CAS  PubMed  Google Scholar 

  • Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, Zhang Q, He Q, Zhang Z (2008) Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 356:333–344

    CAS  PubMed  Google Scholar 

  • Liu J, Gong T, Wang C, Zhong Z, Zhang Z (2007) Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm 340:153–162

    CAS  PubMed  Google Scholar 

  • Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD (2003) Brain uptake of thiamine-coated nanoparticles. J Control Release 93:271–282

    CAS  Google Scholar 

  • Lukowski G, Kasbohm J, Pflegel P, Illing A, Wulff H (2000) Crystallographic investigation of cetylpalmitate solid lipid nanoparticles. Int J Pharm 196:201–205

    CAS  PubMed  Google Scholar 

  • Lukowski G, Werner U (1998) Investigation of surface and drug release of solid lipid nanoparticles loaded with acyclovir. Intern Symp Control Rel Bioact Mater 25:425–428

    Google Scholar 

  • Malik DK, Baboota S, Ahuja A, Hasan S, Ali J (2007) Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv 4:141–151

    CAS  PubMed  Google Scholar 

  • Malzert-Freon A, Vrignaud S, Saulnier P, Lisowski V, Benoit JP, Rault S (2006) Formulation of sustained release nanoparticles loaded with a tripentone, a new anticancer agent. Int J Pharm 320:157–164

    CAS  PubMed  Google Scholar 

  • Mandawgade SD, Patravale VB (2008) Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm 363:132–138

    CAS  PubMed  Google Scholar 

  • Manjunath K, Reddy JS, Venkateswarlu V (2005) Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol 27:127–144

    CAS  PubMed  Google Scholar 

  • Manjunath K, Venkateswarlu V (2006) Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target 14:632–645

    CAS  PubMed  Google Scholar 

  • Martins S, Silva AC, Ferreira DC, Souto EB (2009) Improving oral absorption of Salmon calcitonin by mucoadhesive solid lipid nanoparticles (SLN). J Biomed Nanotech 5:76–83

    Google Scholar 

  • Mayer C, Lukowski G (2000) Solid state NMR investigations on nanosized carrier systems. Pharm Res 17:486–489

    CAS  PubMed  Google Scholar 

  • Mead J, Alfin-Slater R, Howton D, Popjak G (1986) Peroxidation of fatty acids lipids: chemistry, biochemistry and nutrition. Plenum Press, New York, pp 83–99

    Google Scholar 

  • Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    CAS  PubMed  Google Scholar 

  • Miglietta A, Cavalli R, Bocca C, Gabriel L, Gasco MR (2000) Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int J Pharm 210:61–67

    CAS  PubMed  Google Scholar 

  • Miller DW, Batrakova EV, Kabanov AV (1999) Inhibition of multidrug resistance-associated protein (MRP) functional activity with pluronic block copolymers. Pharm Res 16:396–401

    CAS  PubMed  Google Scholar 

  • Moghimi SM, Hedeman H, Muir IS, Illum L, Davis SS (1993) An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim Biophys Acta 1157:233–240

    CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. Faseb J 19:311–330

    CAS  PubMed  Google Scholar 

  • Moghimi SM, Porter CJ, Muir IS, Illum L, Davis SS (1991) Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 177:861–866

    CAS  PubMed  Google Scholar 

  • Müller RH, Keck CM (2004a) Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113:151–170

    CAS  PubMed  Google Scholar 

  • Müller RH, Keck CM (2004b) Drug delivery to the brain–realization by novel drug carriers. J Nanosci Nanotechnol 4:471–483

    PubMed  Google Scholar 

  • Müller RH, Maassen S, Schwarz C, Mehnert W (1997a) Solid lipid nanoparticles (SLN) as potential carrier for human use: interaction with human granulocytes. J Control Release 47:261–269

    CAS  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    CAS  PubMed  Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54(Suppl 1):S131–S155

    CAS  PubMed  Google Scholar 

  • Müller RH, Rühl D, Runge S, SchulzeForster K, Mehnert W (1997b) Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm Res 14:458–462

    CAS  PubMed  Google Scholar 

  • Müller RH, Runge S, Ravelli V, Mehnert W, Thünemann AF, Souto EB (2006) Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int J Pharm 317:82–89

    CAS  PubMed  Google Scholar 

  • Müller RH, Runge SA, Ravelli V, Thünemann AF, Mehnert W, Souto EB (2008) Cyclosporine-loaded solid lipid nanoparticles (SLN): drug-lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm 68:535–544

    CAS  PubMed  Google Scholar 

  • Noble S, Markham A (1995) Cyclosporin. A review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (Neoral). Drugs 50:924–941

    CAS  PubMed  Google Scholar 

  • Pandey R, Khuller GK (2005) Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis 85:227–234

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3(90–105):51

    Google Scholar 

  • Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    PubMed Central  PubMed  Google Scholar 

  • Pardridge WM (2007a) Blood-brain barrier delivery. Drug Discov Today 12:54–61

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2007b) Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. J Control Release 122:345–348

    CAS  Google Scholar 

  • Pardridge WM (2007c) Brain drug development and brain drug targeting. Pharm Res 24:1729–1732

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2007d) Drug targeting to the brain. Pharm Res 24:1733–1744

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2007e) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patton JS, Fishburn CS, Weers JG (2004) The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 1:338–344

    CAS  PubMed  Google Scholar 

  • Pescovitz MD, Book BK, Pollard SG, Milgrom ML, Leapman SB, Filo RS (1992) An evaluation of the cyclosporine parent-compound-specific whole blood TDx assay. Clin Transplant 6:43–47

    CAS  PubMed  Google Scholar 

  • Pople PV, Singh KK (2006) Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech 7(4):91

    PubMed  Google Scholar 

  • Reddy JS, Venkateswarlu V (2004) Novel delivery systems for drug targeting to the brain. Drugs Future 29:63–83

    CAS  Google Scholar 

  • Roche N, Huchon GJ (2000) Rationale for the choice of an aerosol delivery system. J Aerosol Med 13:393–404

    CAS  PubMed  Google Scholar 

  • Rudolph C, Schillinger U, Ortiz A, Tabatt K, Plank C, Müller RH, Rosenecker J (2004) Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm Res 21:1662–1669

    CAS  PubMed  Google Scholar 

  • Salamat-Miller N, Johnston TP (2005) Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int J Pharm 294:201–216

    CAS  PubMed  Google Scholar 

  • Sarmento B, Martins S, Ferreira D, Souto EB (2007) Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine 2:743–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saupe A, Gordon KC, Rades T (2006) Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm 314:56–62

    CAS  PubMed  Google Scholar 

  • Schäfer-Korting M, Mehnert W, Korting HC (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59:427–443

    PubMed  Google Scholar 

  • Scheuch G, Kohlhaeufl MJ, Brand P, Siekmeier R (2006) Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev 58:996–1008

    CAS  PubMed  Google Scholar 

  • Schwarz C, Mehnert W (1999) Solid lipid nanoparticles (SLN) for controlled drug delivery II. Drug incorporation and physicochemical characterization. J Microencapsul 16:205–213

    CAS  PubMed  Google Scholar 

  • Schwarz C, Mehnert W, Lucks JS, Müller RH (1994) Solid lipid nanoparticles (SLN) for controlled drug-delivery.1. Production, characterization and sterilization. J Control Release 30:83–96

    CAS  Google Scholar 

  • Siekmann B, Westesen K (1994) Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surf B Biointerfaces 3:159–175

    CAS  Google Scholar 

  • Souto EB, Almeida AJ, Müller RH (2007) Lipid nanoparticles (SLN (R), NLC (R)) for cutaneous drug delivery: structure, protection and skin effects. J Biomed Nanotechnol 3:317–331

    CAS  Google Scholar 

  • Souto EB, Müller RH (2007) Lipid nanoparticles (SLN and NLC) for drug delivery. In: Domb AJ, Tabata Y, Ravi Kumar MNV, Farber S (eds) Nanoparticles for pharmaceutical applications, Chap. 5. American Scientific Publishers, Stevenson Ranch, CA, pp 103–122

    Google Scholar 

  • Souto EB, Wissing SA, Barbosa CM, Müller RH (2004a) Comparative study between the viscoelastic behaviors of different lipid nanoparticle formulations. J Cosmet Sci 55:463–471

    CAS  PubMed  Google Scholar 

  • Souto EB, Wissing SA, Barbosa CM, Müller RH (2004b) Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 278:71–77

    CAS  PubMed  Google Scholar 

  • Stouch TR, Gudmundsson O (2002) Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Deliv Rev 54:315–328

    CAS  PubMed  Google Scholar 

  • Thole M, Nobmanna S, Huwyler J, Bartmann A, Fricker G (2002) Uptake of cationzied albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J Drug Target 10:337–344

    CAS  PubMed  Google Scholar 

  • Tiwari SB, Amiji MM (2006) A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv 3:219–232

    CAS  PubMed  Google Scholar 

  • Trickler WJ, Nagvekar AA, Dash AK (2008) A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSciTech 9:486–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ugazio E, Cavalli R, Gasco MR (2002) Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int J Pharm 241:341–344

    CAS  PubMed  Google Scholar 

  • Varia JK, Dodiya SS, Sawant KK (2008) Cyclosporine a loaded solid lipid nanoparticles: optimization of formulation, process variable and characterization. Curr Drug Deliv 5:64–69

    CAS  PubMed  Google Scholar 

  • Videira MA, Botelho MF, Santos AC, Gouveia LF, de Lima JJ, Almeida AJ (2002) Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target 10:607–613

    CAS  PubMed  Google Scholar 

  • Vyas TK, Shahiwala A, Marathe S, Misra A (2005) Intranasal drug delivery for brain targeting. Curr Drug Deliv 2:165–175

    CAS  PubMed  Google Scholar 

  • Wang JX, Sun X, Zhang ZR (2002) Enhanced brain targeting by synthesis of 3′, 5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm 54:285–290

    CAS  PubMed  Google Scholar 

  • Westesen K, Bunjes H (1995) Do nanoparticles prepared from lipids solid at room-temperature always possess a solid lipid matrix. Int J Pharm 115:129–131

    CAS  Google Scholar 

  • Westesen K, Bunjes H, Koch MHJ (1997) Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 48:223–236

    CAS  Google Scholar 

  • Westesen K, Siekmann B (1997) Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int J Pharm 151:35–45

    CAS  Google Scholar 

  • Westesen K, Siekmann B, Koch MHJ (1993) Investigations on the physical state of lipid nanoparticles by synchrotron-radiation X-ray-diffraction. Int J Pharm 93:189–199

    CAS  Google Scholar 

  • Wissing SA, Kayser O, Müller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272

    CAS  PubMed  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    CAS  PubMed  Google Scholar 

  • Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23

    CAS  PubMed  Google Scholar 

  • Yang S, Zhu J, Lu Y, Liang B, Yang C (1999a) Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 16:751–757

    CAS  PubMed  Google Scholar 

  • Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ (1999b) Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 59:299–307

    CAS  Google Scholar 

  • Yim D, Cipolla D, Shekunov BY, Chattopadhyay P, Boyd B (2005) Feasibility of pulmonary delivery of nano-suspension formulations using the AERx System. J Aerosol Med 18:101–102

    Google Scholar 

  • Young TJ, Johnson KP, Pace GW, Mishra AK (2004) Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution. AAPS PharmSciTech 5:E11

    PubMed  Google Scholar 

  • Zhang N, Ping Q, Huang G, Han X, Cheng Y, Xu W (2006a) Transport characteristics of wheat germ agglutinin-modified insulin-liposomes and solid lipid nanoparticles in a perfused rat intestinal model. J Nanosci Nanotechnol 6:2959–2966

    CAS  PubMed  Google Scholar 

  • Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X (2006b) Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 327:153–159

    CAS  PubMed  Google Scholar 

  • Zhang Q, Shen Z, Nagai T (2001) Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 218:75–80

    CAS  PubMed  Google Scholar 

  • Zimmermann E, Souto EB, Müller RH (2005) Physicochemical investigations on the structure of drug-free and drug-loaded solid lipid nanoparticles (SLN) by means of DSC and 1H NMR. Pharmazie 60:508–513

    CAS  PubMed  Google Scholar 

  • zur Mühlen A, zur Mühlen E, Niehus H, Mehnert W (1996) Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res 13:1411–1416

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana B. Souto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Souto, E.B., Müller, R.H. (2010). Lipid Nanoparticles: Effect on Bioavailability and Pharmacokinetic Changes. In: Schäfer-Korting, M. (eds) Drug Delivery. Handbook of Experimental Pharmacology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00477-3_4

Download citation

Publish with us

Policies and ethics