Skip to main content

Improving Oral Delivery

  • Chapter
  • First Online:
Drug Delivery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 197))

Abstract

It is estimated that 90% of all medicines are oral formulations and their market share is still increasing, due to sound advantages for the patient, the pharmaceutical industry and healthcare systems. Considering biopharmaceutical issues such as physicochemical requirements of the drug and physiological conditions, however, oral delivery is one of the most challenging routes. Recognising solubility, permeability and residence time in the gastrointestinal milieu as key parameters, different characteristics of drugs and their delivery systems such as size, pH, density, diffusion, swelling, adhesion, degradation and permeability can be adjusted to improve oral delivery. Future developments will focus on further improvement in patient compliance as well as the feasibility of administering biotech drugs via the oral route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAL:

Aleuria aurantia lectin

API:

Active pharmaceutical ingredient

BCS:

Bioclassification System

EGF:

Epidermal growth factor

EOP:

Elementary osmotic pump

EPAS:

Evaporative precipitation into aqueous solution

FAE:

Follicle associated epithelium

FDA:

Food and drug administration

FDDS:

Floating drug delivery system

GALT:

Gut-associated lymphoid tissue

GI:

Gastrointestinal

GRAS:

Generally recognised as safe

HBS:

Hydrodynamically balanced system

HEC:

Hydroxyethyl cellulose

HPMC:

Hydroxypropylmethyl cellulose

IBD:

Inflammatory bowel diseases

LEA:

Lycopersicum esculentum agglutinin

MC:

Methyl cellulose

OPV:

Oral poliovirus vaccine

PEG:

Polyethylene glycol

PVP:

Polyvinylpyrrolidone

SFL:

Spray freezing into liquid

SOTS:

Sandwiched osmotic tablet system

UEA:

Ulex europaeus agglutinin

WGA:

Wheat germ agglutinin

References

  • Ahmed IS (2005) Effect of simulated gastrointestinal conditions on drug release from pectin/ethylcellulose as film coating for drug delivery to the colon. Drug Dev Ind Pharm 31:465–470

    CAS  PubMed  Google Scholar 

  • Aikawa K, Matsumoto K, Uda H, Tanaka S, Shimamura H, Aramaki Y, Tsuchiya S (1998) Hydrogel formation of the pH response polymer polyvinylacetal diethylaminoacetate (AEA). Int J Pharm 167:97–104

    CAS  Google Scholar 

  • Akala EO, Kopeckova P, Kopecek J (1998) Novel pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials 19:1037–1047

    CAS  PubMed  Google Scholar 

  • Allen A (1984) The structure and function of gastrointestinal mucus. In: Boedeker EC (ed) Attachment of organisms to the gut mucosa. CRC, Boca Raton, FL, pp 4–10

    Google Scholar 

  • Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation in-vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    CAS  PubMed  Google Scholar 

  • Anal AK (2007) Time-controlled pulsatile delivery systems for bioactive compounds. Recent Pat Drug Deliv Formul 1:73–79

    CAS  PubMed  Google Scholar 

  • Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates – A review. J Control Release 128:185–199

    CAS  PubMed  Google Scholar 

  • Arora S, Ali J, Ahuja A, Khar RK, Baboota S (2005) Floating drug delivery systems: a review. AAPS PharmSciTech 6:E372–E390

    PubMed Central  PubMed  Google Scholar 

  • Asghar LFA, Chandran S (2006) Multiparticulate formulation approach to colon specific drug delivery: current perspectives. J Pharm Pharm Sci 9:327–338

    CAS  PubMed  Google Scholar 

  • Aungst BJ (2000) Intestinal permeation enhancers. J Pharm Sci 89:429–442

    CAS  PubMed  Google Scholar 

  • Aziz MA, Midha S, Waheed SM, Bhatnagar R (2007) Oral vaccines: new needs, new possibilities. Bio Essays 29:591–604

    CAS  PubMed  Google Scholar 

  • Bardonnet PL, Faivre V, Pugh WJ, Piffaretti JC, Falson F (2006) Gastroretentive dosage forms: overview and special case of Helicobacter pylori. J Control Release 111:1–18

    CAS  PubMed  Google Scholar 

  • Bar-Shalom D, Bukh M, Kindt Larsen T (1991) Egalet®, a novel controlled-release system. Ann NY Acad Sci 618:578–580

    Google Scholar 

  • Basak P, Adhikari B (2008) Poly (vinyl alcohol) hydrogels for pH dependent colon targeted drug delivery. J Mater Sci Mater Med. doi:10.1007/s10856-008-3496-0

    Google Scholar 

  • Bernkop-Schnürch A (2005) Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev 57:1569–1582

    PubMed  Google Scholar 

  • Bonnet MC, Dutta A (2008) World wide experience with inactivated poliovirus vaccine. Vaccine 26:4978–4983

    PubMed  Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    CAS  PubMed  Google Scholar 

  • Bourgeois S, Harvey R, Fattal E (2005) Polymer colon drug delivery systems and their application to peptides, proteins, and nucleic acids. Am J Drug Deliv 3:171–204

    CAS  Google Scholar 

  • Brandtzaeg P (2007) Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25:5467–5484

    CAS  PubMed  Google Scholar 

  • Brandtzaeg P, Halstensen TS, Kett K, Krajci P, Kvale D, Rognum TO, Scott H, Sollid LM (1989) Immunobiology and immunopathology of human gut mucosa: humoral immunity and intra-epithelial lymphocytes. Gastroenterol 97:1562–1584

    CAS  Google Scholar 

  • Brayden DJ (2001) Oral vaccination in man using antigens in particles: current status. Eur J Pharm Sci 14:183–189

    CAS  PubMed  Google Scholar 

  • Brayden DJ, Baird AW (2001) Microparticle vaccine approaches to stimulate mucosal immunisation. Microbes Infect 3:867–876

    CAS  PubMed  Google Scholar 

  • Brayden DJ, Jepson MA, Baird AW (2005) Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 10:1145–1157

    CAS  PubMed  Google Scholar 

  • Brockmeier D, Grigoleit HG, Leonhardt H (1986) The absorption of piretanide from the gastro-intestinal tract is site-dependent. Eur J Clin Pharmacol 30:79–82

    CAS  PubMed  Google Scholar 

  • Brondsted H, Kopecek J (1992) Hydrogels for site-specific drug delivery to the colon: in vitro and in vivo degradation. Pharm Res 9:1540–1545

    CAS  PubMed  Google Scholar 

  • Brown SR, Cann PA, Read NW (1990) Effect of coffee on distal colon function. Gut 31:450–453

    CAS  PubMed  Google Scholar 

  • Brunner E (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 47:56–102

    Google Scholar 

  • Chan RP, Pope DJ, Gilbert AP, Sacra PJ, Baron JH, Lennard-Jones JE (1983) Studies of two novel sulfasalazine analogs, ipsalazide and balsalazide. Dig Dis Sci 28:609–615

    CAS  PubMed  Google Scholar 

  • Chawla G, Gupta P, Koradia V, Bansal AK (2003) Gastroretention – a means to address regional variability in intestinal drug absorption. Pharm Technol 27:50–68

    Google Scholar 

  • Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW (2004) A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96:285–300

    CAS  PubMed  Google Scholar 

  • Chen X, Young TJ, Sarkari M, Williams Iii RO, Johnston KP (2002) Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm 242:3–14

    CAS  PubMed  Google Scholar 

  • Chiu HC, Hsiue GH, Lee YP, Huang LW (1999) Synthesis and characterization of pH-sensitive dextran hydrogels as a potential colon-specific drug delivery system. J Biomater Sci Polym Ed 10:591–608

    CAS  PubMed  Google Scholar 

  • Chourasia MK, Jain SK (2004) Polysaccharides for colon targeted drug delivery. Drug Deliv 11:129–148

    CAS  PubMed  Google Scholar 

  • Clark MA, Hirst BH, Jepson MA (1998) M-cell surface beta 1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer’s patch M cells. Infect Immun 66:1237–1243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colombo P, Santi P, Bettini R, Brazel CS (2000) Drug release from swelling-controlled systems. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. Marcel Dekker, New York, pp 183–209

    Google Scholar 

  • Conley R, Gupta SL, Sathyan G (2006) Clinical spectrum of the osmotic-controlled release oral delivery system (OROS), an advanced oral delivery form. Curr Med Res Opin 22:1879–1892

    CAS  PubMed  Google Scholar 

  • Constantinides PP, Welzel G, Smith EH, PL SS, Yiv SH, Owen AB (1996) Water-in-oil microemulsions containing medium-chain fatty acids/salts: formulation and intestinal absorption enhancement evaluation. Pharm Res 13:210–215

    CAS  PubMed  Google Scholar 

  • Crevoisier C, Hoevels B, Zurcher G, Da Prada M (1987) Bioavailability of l-dopa after Madopar HBS administration in healthy volunteers. Eur Neurol 27:36–46

    CAS  PubMed  Google Scholar 

  • Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035

    CAS  PubMed  Google Scholar 

  • Davis SS, Khosla R, Wilson CG, Washington N (1987) The gastrointestinal transit of a controlled release pellet formulation of tiaprofenic acid. Int J Pharm 34:253–258

    Google Scholar 

  • Debongie JC, Philips SF (1978) Capacity of the human colon to absorb fluid. Gastroenterology 74:698–703

    Google Scholar 

  • Delie F, Blanco-Prieto MJ (2005) Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules 10:65–80

    CAS  PubMed  Google Scholar 

  • Dearn AR (1997) Atovaquone pharmaceutical compositions. US6018080

    Google Scholar 

  • des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    CAS  PubMed  Google Scholar 

  • Dressman JB (1986) Comparison of canine and human gastrointestinal physiology. Pharm Res 3:123–131

    CAS  PubMed  Google Scholar 

  • Edsbäcker S, Bengtsson B, Larsson P, Lundin P, Nilsson A, Ulmius J, Wollmer P (2003) A pharmacoscintigraphic evaluation of oral budesonide given as controlled-release (Entocort) capsules. Aliment Pharmacol Ther 17:525–536

    PubMed  Google Scholar 

  • Edwards C (1997) Physiology of the colorectal barrier. Adv Drug Deliv Rev 28:173–190

    CAS  Google Scholar 

  • Engel GL, Farid NA, Faul MM, Richardson LA, Winneroski LL (2000) Salt form selection and characterization of LY333531 mesylate monohydrate. Int J Pharm 198:239–247

    CAS  PubMed  Google Scholar 

  • Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD (1988) Measurement of gastrointestinal pH profiles in normal, ambulant human subjects. Gut 29:1035–1041

    CAS  PubMed  Google Scholar 

  • Fasano A, Uzzau S (1997) Modulation of intestinal tight junctions by zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest 99:1158–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fedorak RN, Bistritz L (2005) Targeted delivery, safety, and efficacy of oral enteric-coated formulations of budesonide. Adv Drug Deliv Rev 57:303–316

    CAS  PubMed  Google Scholar 

  • Feldman M, Barnett C (1991) Fasting gastric pH and its relationship to true hypochlorhydria in humans. Dig Dis Sci 36:866–869

    CAS  PubMed  Google Scholar 

  • Fillafer C, Friedl DS, Wirth M, Gabor F (2008) Fluorescent bio-nanoprobes to characterise cytoadhesion and cytoinvasion. Small 4:627–633

    CAS  PubMed  Google Scholar 

  • Florence AT (1997) The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res 14:259–266

    CAS  PubMed  Google Scholar 

  • Florence AT (2005) Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discov Today Technol 2:75–81

    CAS  Google Scholar 

  • Florence AT (2006) Nanoparticle flow: implications for drug delivery. In: Torchilin VP (ed) Nanoparticles as drug carriers. Imperial College Press, London, pp 9–27

    Google Scholar 

  • Florence AT, Attwood D (2006) Physicochemical principles of pharmacy, 4th edn. Pharmaceutical Press, London, Chicago

    Google Scholar 

  • Foster N, Hirst BH (2005) Exploiting receptor biology for oral vaccination with biodegradable particulates. Adv Drug Deliv Rev 57:431–450

    CAS  PubMed  Google Scholar 

  • Foxwell AR, Cripps AW, Kyd JM (2007) Optimization of oral immunization through receptor-mediated targeting of M cells. Hum Vaccin 3:220–223

    CAS  PubMed  Google Scholar 

  • Friend DR (2005) New oral delivery systems for treatment of inflammatory bowel disease. Adv Drug Deliv Rev 57:247–265

    CAS  PubMed  Google Scholar 

  • Friend DR, Chang GW (1984) A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem 27:261–266

    CAS  PubMed  Google Scholar 

  • Gabius HJ (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87:108–121

    CAS  PubMed  Google Scholar 

  • Gabor F, Bogner E, Weissenböck A, Wirth M (2004) The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev 56:459–480

    CAS  PubMed  Google Scholar 

  • Galli C (2006) Experimental determination of the diffusion boundary layer width of micron and submicron particles. Int J Pharm 313:114–122

    CAS  PubMed  Google Scholar 

  • Gallo SH, McClave SA, Makk LJK, Looney SW (1996) Standardization of clinical criteria required for use of the 12.5mm barium tablet in evaluating esophageal lumenal patency. Gastrointest Endosc 44:181–184

    CAS  PubMed  Google Scholar 

  • Gazzaniga A, Palugan L, Foppoli A, Sangalli ME (2008) Oral pulsatile delivery systems based on swellable hydrophilic polymers. Eur J Pharm Biopharm 68:11–18

    CAS  PubMed  Google Scholar 

  • Gazzaniga A, Sangalli ME, Giordano F (1994) Oral chronotopic® drug delivery systems: achievement of time and/or site specificity. Eur J Pharm Biopharm 40:246–250

    CAS  Google Scholar 

  • Gohil JM, Bhattacharya A, Ray P (2006) Studies on the cross-linking of poly (vinyl alcohol). J Polym Res 13:161–169

    CAS  Google Scholar 

  • Gould S, Scott RC (2005) 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol 43:1451–1459

    CAS  PubMed  Google Scholar 

  • Gupta VS, Beckert TE, Price JC (2001) A novel pH- and time-based multi-unit potential colonic drug delivery system. Int J Pharm 213:83–91

    CAS  PubMed  Google Scholar 

  • Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Tubic Grozdanis M, Lenhardt T, Langguth P (2007) Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev 59:419–426

    CAS  PubMed  Google Scholar 

  • Harder S, Fuhr U, Beermann D, Staib AH (1990) Ciprofloxacin absorption in different regions of the human gastrointestinal tract. Investigations with hf-capsule. Br J Clin Pharmacol 30:35–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardy JG, Evans DF, Zaki I, Clark AG, Tonnesen HH, Gamst ON (1987) Evaluation of an enteric-coated naproxen tablet using gamma scintigraphy and pH monitoring. Int J Pharm 37:245–250

    CAS  Google Scholar 

  • Hardy JG, Wilson CG, Wood E (1985) Drug delivery to the proximal colon. J Pharm Pharmacol 37:874–877

    CAS  PubMed  Google Scholar 

  • Hastewell J, Lynch S, Fox R, Williamson I, Skelton-Stroud P, Mackay M (1994) Enhancement of human calcitonin absorption across the rat colon in vivo. Int J Pharm 101:115–120

    CAS  Google Scholar 

  • Havgaard L, Brondsted H (1996) Current applications of polysaccharides in colon targeting. Crit Rev Ther Dug Carrier Syst 13:185–223

    Google Scholar 

  • Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165

    CAS  PubMed  Google Scholar 

  • Herbig SM, Cardinal JR, Korsmeyer RW, Smith KL (1995) Asymmetric-membrane tablet coatings for osmotic drug-delivery. J Control Release 35:127–136

    CAS  Google Scholar 

  • Houghton LA, Mangnall YF, Read NW (1990) Effect of incorporating fat into a liquid test meal on the relation between intragastric distribution and gastric emptying in human volunteers. Gut 31:1226–1229

    CAS  PubMed  Google Scholar 

  • http://www.freedoniagroup.com/Drug-Delivery-Systems.html

  • http://www.in-pharmatechnologist.com/Materials-Formulation/Oral-drug-delivery-sector-tipped-for-explosive-growth

  • https://reports.pharmalicensing.com/public/store/item/425-drug-delivery-markets-vol-i-oral-delivery

  • Hu J, Johnston KP, Williams RO (2003) Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems. Eur J Pharm Sci 20:295–303

    CAS  PubMed  Google Scholar 

  • Hu M, Amidon GL (1988) Passive and carrier mediated intestinal absorption components of captopril. J Pharm Sci 77:1007–1011

    CAS  PubMed  Google Scholar 

  • Hugger ED, Novak BL, Burton PS, Audus KL, Borchardt RT (2002) A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J Pharm Sci 91:1991–2002

    CAS  PubMed  Google Scholar 

  • Hussar DA (2000) Tablet-splitting games are bad patient care ... and bad pharmacy practice. Pharm Today 6:5

    Google Scholar 

  • Hwang SJ, Park H, Park K (1998) Gastric retentive drug-delivery systems. Crit Rev Ther Drug Carrier Syst 15:243–284

    PubMed  Google Scholar 

  • Ichikawa M, Watanabe S, Miyake Y (1991) A new multiple-unit oral floating dosage system. I: preparation and in vitro evaluation of floating and sustained-release characteristics. J Pharm Sci 80:1062–1066

    CAS  PubMed  Google Scholar 

  • Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    CAS  PubMed  Google Scholar 

  • Jani PU, Florence AT, McCarthy DE (1992) Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int J Pharm 84:245–252

    CAS  Google Scholar 

  • Jobin G, Cortot A, Godbillon I, Duval M, Schoeller JP, Hirtz J, Bernier JJ (1985) Investigation of drug absorption from the gastrointestinal tract of man. I. Metoprolol in the stomach, duodenum and jejunum. Br J Clin Pharmacol 19:975–1055

    Google Scholar 

  • Kararli TT (1989) Gastrointestinal absorption of drugs. Crit Rev Ther Drug Carrier Syst 6:39–86

    CAS  PubMed  Google Scholar 

  • Katsuma M, Watanabe S, Kawai H, Takemura S, Masuda Y, Fukui M (2002) Studies on lactulose formulations for colon-specific drug delivery. Int J Pharm 249:33–43

    CAS  PubMed  Google Scholar 

  • Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62:3–16

    CAS  PubMed  Google Scholar 

  • Kesisoglou F, Panmai S, Wu Y (2007) Nanosizing – oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 59:631–644

    CAS  PubMed  Google Scholar 

  • Kimura K, Hirayama F, Uekama K (1999) Characterization of tolbutamide polymorphs (Burger’s forms II and IV) and polymorphic transition behavior. Int J Pharm 88:385–391

    CAS  Google Scholar 

  • King LS, Lozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:687–698

    CAS  PubMed  Google Scholar 

  • Kirwan WO, Smith AN (1974) Gastrointestinal transit estimated by an isotope capsule. Scand J Gastroenterol 9:763–766

    CAS  PubMed  Google Scholar 

  • Klausner EA, Lavy E, Friedman M, Hoffman A (2003) Expandable gastroretentive dosage forms. J Control Release 90:143–162

    CAS  PubMed  Google Scholar 

  • Kompella UB, Lee VHL (2001) Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev 46:211–245

    CAS  PubMed  Google Scholar 

  • Krause KP, Kayser O, Mäder K, Gust R, Müller RH (2000) Heavy metal contamination of nanosuspensions produced by high-pressure homogenisation. Int J Pharm 196:169–172

    CAS  PubMed  Google Scholar 

  • Krishnamachari Y, Madan P, Lin S (2007) Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int J Pharm 338:238–247

    CAS  PubMed  Google Scholar 

  • Kumar RMN (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3:234–258

    Google Scholar 

  • Lamprecht A, Schaefer U, Lehr CM (2001) Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res 18:788–793

    CAS  PubMed  Google Scholar 

  • Langguth P, Fricker G, Wunderli-Allenspach H (2004) Biopharmazie. Wiley, Weinheim, p 180 Chapter 5

    Google Scholar 

  • Larsen C, Jensen BH, Olesen HP (1991) Stability of ketoprofen-dextran ester prodrugs in homogeneates of various segments of the pig GI tract. Acta Pharm Nord 3:41–44

    CAS  PubMed  Google Scholar 

  • Lennernäs H, Abrahamsson B (2005) The use of biopharmaceutic classification of drugs in drug discovery and development: current stauts and future extension. J Pharm Pharmacol 57:273–285

    PubMed  Google Scholar 

  • Levine MM (2003) Can needle-free administration of vaccines become the norm in global immunization? Nat Med 9:99–103

    CAS  PubMed  Google Scholar 

  • Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    CAS  PubMed  Google Scholar 

  • Lipton JR, Coder DM, Jacobs LR (1988) Longterm effects of fermentable fibres on rat colonic pH and epithelial cell cycle. J Nutr 118:840–845

    Google Scholar 

  • Liu L, Ku J, Khang G, Lee B, Rhee JM, Lee HB (2000) Nifedipine controlled delivery by sandwiched osmotic tablet system. J Control Release 68:145–156

    CAS  PubMed  Google Scholar 

  • Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125:91–97

    CAS  Google Scholar 

  • Lochner N, Pittner F, Wirth M, Gabor F (2003) Wheat germ agglutinin binds to the epidermal growth factor-receptor of artificial Caco-2 membranes as detected by silver nanoparticle enhanced fluorescence. Pharm Res 20:833–839

    CAS  PubMed  Google Scholar 

  • Lorenzo-Lamosa ML, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1998) Design of microencapsulated chitosan microspheres for colonic drug delivery. J Control Release 52:109–118

    CAS  PubMed  Google Scholar 

  • Lui CY, Amidon GL, Berardi RR (1986) Comparison of gastrointestinal pH in dogs and humans: implications of the use of the beagle dog as a model for oral absorption in humans. J Pharm Sci 75:271–274

    CAS  PubMed  Google Scholar 

  • Mackay M, Phillips J, Hastewell J (1997) Peptide drug delivery: colonic and rectal absorption. Adv Drug Deliv Rev 28:253–273

    CAS  Google Scholar 

  • Mayo-Pedrosa M, Cachafeiro-Andrade N, Alvarez-Lorenzo C, Martinez-Pacheco R, Concheiro A (2008) In situ photopolymerization-coated pellets for pH-dependent drug delivery. Eur Polymer J 44:2626–2638

    Google Scholar 

  • McNeil NI, Ling KLE, Wager J (1987) Mucosal surface pH of the large intestine of the rat and of normal and inflamed large intestine in man. Gut 28:707–713

    CAS  PubMed  Google Scholar 

  • Melander A (1987) Influence of food on the bioavailability of drugs. Clin Pharmacokinet 3:337–341

    Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18:113–120

    CAS  PubMed  Google Scholar 

  • Metcalf AM, Phillips SF, Zinsmeister AR, Mac-Carthy RL, Beart RW, Wolff BG (1987) Simplified assessment of segmental colonic transit. Gastroenterology 91:40–47

    Google Scholar 

  • Miller H, Zhang J, KuoLee R, Patel GB, Chen W (2007) Intestinal M cells: the fallible sentinels? World J Gastroenterol 13:1477–1486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Milojevic S, Newton JM, Cummings JH, Gibson GR, Botham RL, Ring SG, Stockham M, Allwood MC (1996) Amylose as a coating for drug delivery to the colon: preparation and in vitro evaluation using 5-aminosalicylic acid pellets. J Control Release 38:75–84

    CAS  Google Scholar 

  • Minami K, Hirayama F, Uekama K (1998) Colon-specific drug delivery based on a cyclodextrin prodrug: release behaviour of biphenylylacetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration. J Pharm Sci 87:715–720

    CAS  PubMed  Google Scholar 

  • Minko T (2004) Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 56:491–509

    CAS  PubMed  Google Scholar 

  • Möschwitzer J, Müller RH (2007) Drug nanocrystals – the universal formulation approach for poorly soluble drugs. In: Thassu D, Deleers M, Pathak Y (eds) Nanoparticulate Drug Delivery Systems. Informa Healthcare, New York, pp 71–88

    Google Scholar 

  • Mountfield RJ, Senepin S, Schleimer M, Walter I, Bittner B (2000) Potential inhibitory effects of formulation ingredients on intestinal cytochrome P450. Int J Pharm 211:89–92

    CAS  PubMed  Google Scholar 

  • Moustafine RI, Kabanova TV, Kemenova VA, Van Den Mooter G (2005) Characteristics of interpolyelectrolyte complexes of Eudragit E100 with Eudragit L100. J Control Release 103:191–198

    CAS  PubMed  Google Scholar 

  • Muranushi N, Takagi S, Muranishi S, Sezaki H (1981) Effect of fatty acids and monoglycerides on permeability of lipid bilayer. Chem Phys Lipids 28:269–279

    CAS  PubMed  Google Scholar 

  • Müller RH, Peters K (1998) Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. Int J Pharm 160:229–237

    Google Scholar 

  • Nernst W (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 47:52–55

    CAS  Google Scholar 

  • Nerurkar MM, Burton PS, Borchardt RT (1996) The use of surfactants to enhance the permeability of peptides through caco-2 cells by inhibition of an apically polarized efflux system. Pharm Res 13:528–534

    CAS  PubMed  Google Scholar 

  • Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Google Scholar 

  • O’Hagan DT, Singh M, Ulmer JB (2006) Microparticle-based technologies for vaccines. Methods 40:10–19

    PubMed  Google Scholar 

  • Ozeki Y, Ando M, Watanabe Y, Danjo K (2004) Evaluation of novel one-step dry-coated tablets as a platform for delayed-release tablets. J Control Release 95:51–60

    CAS  PubMed  Google Scholar 

  • Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593

    CAS  PubMed  Google Scholar 

  • Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60:915–928

    CAS  PubMed  Google Scholar 

  • Peppas LB, Peppas NA (1990) Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials 11:635–644

    PubMed  Google Scholar 

  • Peppercorn MA (1984) Sulfasalazine: pharmacology, clinical use, toxicity, and related new drug development. Ann Int Med 101:377–386

    CAS  PubMed  Google Scholar 

  • Perrie Y, Kirby D, Bramwell VW, Mohammed AR (2007) Recent developments in particulate-based vaccines. Recent Pat Drug Deliv Formul 1:117–129

    CAS  PubMed  Google Scholar 

  • Porter CJH, Pouton CW, Cuine JF, Charman WN (2008) Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 60:673–691

    CAS  PubMed  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    CAS  PubMed  Google Scholar 

  • Rasenack N, Hartenhauer H, Müller BW (2003) Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int J Pharm 254:137–145

    CAS  PubMed  Google Scholar 

  • Read NW, Miles CA, Fisher D, Holgate AM, Kime ND, Mitchell MA, Reeve AM, Walker W (1980) Transit of a meal through the stomach, small intestine and colon of normal subjects and its role in the pathogenesis of diarrhea. Gastroenterology 79:1276–1282

    CAS  PubMed  Google Scholar 

  • Roth-Walter F, Schoell I, Untersmayr E, Fuchs R, Boltz-Nitulescu G, Weissenboeck A, Scheiner O, Gabor F, Jensen-Jarolim E (2004) M cell targeting with Aleuria aurantia lectin as a novel approach for oral allergen immunotherapy. J Allergy Clin Immunol 114:1362–1368

    CAS  PubMed  Google Scholar 

  • Roth-Walter F, Bohle B, Schoell I, Untersmayr E, Scheiner O, Boltz-Nitulescu G, Gabor F, Brayden DJ, Jensen-Jarolim E (2005a) Targeting antigens to murine and human M-cells with Aleuria aurantia lectin-functionalized microparticles. Immunol Lett 100:182–188

    CAS  PubMed  Google Scholar 

  • Roth-Walter F, Schoell I, Untersmayr E, Ellinger A, Boltz-Nitulescu G, Scheiner O, Gabor F, Jensen-Jarolim E (2005b) Mucosal targeting of allergen-loaded microspheres by Aleuria aurantia lectin. Vaccine 23:2703–2710

    CAS  PubMed  Google Scholar 

  • Roth-Walter F, Jensen-Jarolim E (2007) Oral immunotherapy against type I allergy. J Allergy Clin Immunol 19:21–26

    Google Scholar 

  • Rouge N, Buri P, Doelker E (1996) Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. Int J Pharm 136:117–139

    CAS  Google Scholar 

  • Rubinstein A, Nakar D, Sintov A (1992) Chondroitin-sulfate: a potential biodegradable carrier for colon-specific drug delivery. Int J Pharm 84:141–150

    CAS  Google Scholar 

  • Rubinstein A, Tirosh B, Baluom M, Nassar T, David A, Radai R, GlikoKabir I, Friedman M (1997) The rationale for peptide drug delivery to the colon and the potential of polymeric carriers as effective tools. J Control Release 46:59–73

    CAS  Google Scholar 

  • Russell-Jones GJ, Arthur L, Walker H (1999) Vitamin B12-mediated transport of nanoparticles across Caco-2 cells. Int J Pharm 179:247–255

    CAS  PubMed  Google Scholar 

  • Salama NN, Eddington ND, Fasano A (2006) Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev 58:15–28

    CAS  PubMed  Google Scholar 

  • Sangalli ME, Maroni A, Zema L, Busetti C, Giordano F, Gazzaniga A (2001) In vitro and in vivo evaluation of an oral system for time and/or site-specific drug delivery. J Control Release 73:103–110

    CAS  PubMed  Google Scholar 

  • Scheline RR (1973) Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 25:451–523

    CAS  PubMed  Google Scholar 

  • Schiller C, Fröhlich CP, Giessmann T, Siegmund W, Moennikes H, Hosten N, Weitschies W (2005) Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonace imaging. Aliment Pharmacol Ther 22:971–979

    CAS  PubMed  Google Scholar 

  • Shakweh M, Ponchel G, Fattal E (2004) Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 1:141–163

    CAS  PubMed  Google Scholar 

  • Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62R

    CAS  PubMed  Google Scholar 

  • Shokri J, Ahmadi P, Rashidi P, Shahsavari M, Rajabi-Siahboomi A, Nokhodchi A (2008) Swellable elementary osmotic pump (SEOP): an effective device for delivery of poorly water-soluble drugs. Eur J Pharm Biopharm 68:289–297

    CAS  PubMed  Google Scholar 

  • Siegel RA, Falamarzian BA, Firestone BA, Moxley BC (1988) pH-controlled release from hydrophobic/polyelectrolyte co-polymer hydrogels. J Control Release 8:179–182

    CAS  Google Scholar 

  • Simpkins JW, Smulkowski M, Dixon R, Tuttle R (1988) Evidence for the delivery of narcotic antagonists to the colon as their glucuronide conjugates. J Phamacol Exp Ther 244:195–205

    CAS  Google Scholar 

  • Singh BN, Kim KH (2000) Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J Control Release 63:235–259

    CAS  PubMed  Google Scholar 

  • Sinha VR, Kumria R (2003) Microbially triggered drug delivery to the colon. Eur J Pharm Sci 18:3–18

    CAS  PubMed  Google Scholar 

  • Smart JD (2005) Buccal drug delivery. Expert Opin Drug Deliv 2:507–517

    CAS  PubMed  Google Scholar 

  • Smith GW, Wiggins PM, Lee SP, Tasman-Jones C (1986) Diffusion of butyrate through pig colon mucus in vitro. Clin Sci 70:271–276

    CAS  PubMed  Google Scholar 

  • Sood A, Panchagnula R (2001) Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev 101:3275–3303

    CAS  PubMed  Google Scholar 

  • Stegemann S, Leveiller F, Franchi D, de Jong H, Lindén H (2007) When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 31:249–261

    CAS  PubMed  Google Scholar 

  • Streubel A, Siepmann J, Bodmeier R (2006) Drug delivery to the upper small intestine window using gastroretentive technologies. Curr Opin Pharmacol 6:501–508

    CAS  PubMed  Google Scholar 

  • Strickley RG (2004) Solubilizing excipients in oral and injectable formulations. Pharm Res 21:201–230

    CAS  PubMed  Google Scholar 

  • Swaan PW, Szoka FC, Oie S (1996) Use of the intestinal and hepatic bile acid transporters for drug delivery. Adv Drug Deliv Rev 20:59–82

    CAS  Google Scholar 

  • Takeuchi H, Yamamoto H, Kawashima Y (2001) Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv Drug Deliv Rev 47:39–54

    CAS  PubMed  Google Scholar 

  • Talukder R, Fassihi R (2004) Gastroretentive delivery systems: a mini review. Drug Dev Ind Pharm 30:1019–1028

    CAS  PubMed  Google Scholar 

  • Tang R, Orme CA, Nancollas GH (2004) Dissolution of crystallites: surface energetic control and size effects. Chem Phys Chem 5:688–696

    CAS  PubMed  Google Scholar 

  • Terwogt MJM, Beijnen JH, ten Bokkel Huinink WW, Rosing H, Schellens JHM (1998) Co-administration of cyclosporin enables oral therapy with paclitaxel. Lancet 352:285

    CAS  Google Scholar 

  • Thomas E, Rubino J (1996) Solubility, melting point and salting-out relationships in a group of secondary amine hydrochloride salts. Int J Pharm 130:179–183

    CAS  Google Scholar 

  • Thombre AG, Appel LE, Chidlaw MB, Daugherity PD, Dumont F, Evans LAF, Sutton SC (2004) Osmotic drug delivery using swellable-core technology. J Control Release 94:75–89

    CAS  PubMed  Google Scholar 

  • Thombre AG, Cardinal JR, DeNoto AR, Herbig SM, Smith KL (1999) Asymmetric membrane capsules for osmotic drug delivery. I. Development of a manufacturing process. J Control Release 57:55–64

    CAS  PubMed  Google Scholar 

  • Tugcu-Demiroz F, Acartürk F, Takka S, Konus-Boyunaga O (2004) In-vitro and in-vivo evaluation of mesalazine-guar gum matrix tablets for colonic drug delivery. J Drug Target 12:105–112

    PubMed  Google Scholar 

  • Van den Mooter G, Samyn C, Kinget R (1992) Azo polymers for colon-specific drug delivery. Int J Pharm 87:37–46

    Google Scholar 

  • Van den Mooter G, Samyn C, Kinget R (1993) Azo polymers for colon-specific drug delivery. II: Influence of the type of azo polymer on the degradation by intestinal microflora. Int J Pharm 97:133–139

    Google Scholar 

  • van Santen E, Barends DM, Frijlink HW (2002) Breaking of scored tablets: a review. Eur J Pharm Biopharm 53:139–145

    PubMed  Google Scholar 

  • Vandelli MA, Leo E, Forni F, Bernabei MT (1996) In vitro evaluation of a potential colonic delivery system that releases drug after controllable lag-time. Eur J Pharm Biopharm 43: 148–151

    Google Scholar 

  • Varum FJ, McConnell EL, Sousa JJ, Veiga F, Basit AW (2008) Mucoadhesion and the gastrointestinal tract. Crit Rev Ther Drug Carrier Syst 25:207–258

    CAS  PubMed  Google Scholar 

  • Verma RK, Krishna DV, Garg S (2002) Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release 79:7–27

    CAS  PubMed  Google Scholar 

  • Verma RK, Mishra B, Garg S (2000) Osmotically controlled oral drug delivery. Drug Dev Ind Pharm 26:695–708

    CAS  PubMed  Google Scholar 

  • Vervoort L, Kinget R (1996) In vitro degradation by colonic bacteria of inulinHP incorporated in Eudragit RS films. Int J Pharm 129:185–190

    CAS  Google Scholar 

  • Volkheimer G (1974) Passage of particles through the wall of the gastrointestinal tract. Environ Health Perspect 9:215–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walter E, Kissel T, Amidon GL (1996) The intestinal peptide carrier: a potential transport system for small peptide derived drugs. Adv Drug Deliv Rev 20:33–58

    CAS  Google Scholar 

  • Walter SIE, De Vries JX, Nickel B, Stenzhorn G, Weber E (1989) The influence of different formula diets and different pharmaceutical formulations on the systemic bioavailabilty of paracetamol, gall bladder size and plasma glucose. Int J Clin Pharmacol Exp Ther Toxicol 27:544–550

    Google Scholar 

  • Washington N, Washington C, Wilson CG (2002) Physiological pharmaceutics: barriers to drug absorption. Taylor & Francis, London

    Google Scholar 

  • Waterman KC (2007) A critical review of gastric retentive controlled drug delivery. Pharm Dev Technol 12:1–10

    CAS  PubMed  Google Scholar 

  • Weissenboeck A, Bogner E, Wirth M, Gabor F (2004) Binding and uptake of wheat germ agglutinin-decorated PLGA-nanospheres by Caco-2 monolayers. Pharm Res 21:1919–1925

    Google Scholar 

  • Weitschies W, Kosch O, Moennikes H, Trahms L (2005) Magnetic marker monitoring: an application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behaviour of magnetically marked solid dosage forms. Adv Drug Deliv Rev 57:1210–1222

    CAS  PubMed  Google Scholar 

  • Whitehead K, Karr N, Mitragotri S (2008) Safe and effective permeation enhancers for oral drug delivery. Pharm Res 25:1782–1788

    CAS  PubMed  Google Scholar 

  • Wirth M, Kneuer C, Lehr CM, Gabor F (2002) Lectin-mediated drug delivery: discrimination between cytoadhesion and cytoinvasion and evidence for lysosomal accumulation of wheat germ agglutinin in the Caco-2 model. J Drug Target 10:439–448

    CAS  PubMed  Google Scholar 

  • Wiwattanapatapee R, Lomlim L, Saramunee K (2003) Dendrimer conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release 88:1–9

    CAS  PubMed  Google Scholar 

  • Wu W, Nancollas GH (1998) A new understanding of the relationship between solubility and particle size. J Solution Chem 27:521–531

    CAS  Google Scholar 

  • Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K, Chen C, Thompson K, Higgins R, Batra U, Shelukar S, Kwei G, Storey D (2004) The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm 285:135–146

    CAS  PubMed  Google Scholar 

  • Yang L, Eshraghi J, Fassihi R (1999) A new intragastric delivery system for the treatment of Helicobacter pylori associated gastric ulcer: in vitro evaluation. J Control Release 57:215–222

    CAS  PubMed  Google Scholar 

  • Yeh PY, Berenson MM, Samowitz WS, Kopečková P, Kopecek J (1995) Site-specific drug delivery and penetration enhancement in the gastrointestinal tract. J Control Release 36:109–124

    CAS  Google Scholar 

  • Yoshioka M, Hancock BC, Zografi G (1994) Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci 83:1700–1705

    CAS  PubMed  Google Scholar 

  • Yoshioka M, Hancock BC, Zografi G (1995) Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J Pharm Sci 84:983–986

    CAS  PubMed  Google Scholar 

  • Zentner GM, Rork GS, Himmelstein KJ (1985) The controlled porosity osmotic pump. J Control Release 1:269–282

    CAS  Google Scholar 

  • Zhang H, Alsarra IA, Neau SH (2002) An in vitro evaluation of a chitosan-containing multiparticulate system for macromolecule delivery to the colon. Int J Pharm 239:197–205

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabor, F., Fillafer, C., Neutsch, L., Ratzinger, G., Wirth, M. (2010). Improving Oral Delivery. In: Schäfer-Korting, M. (eds) Drug Delivery. Handbook of Experimental Pharmacology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00477-3_12

Download citation

Publish with us

Policies and ethics