Skip to main content

Symbolic Computation of an Exact Solution of the Cauchy Problem for the System of Crystal Optics with Polynomial Data

  • Conference paper
Numerical Analysis and Its Applications (NAA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5434))

Included in the following conference series:

Abstract

A new method for computing explicit formulae of exact solutions of the Cauchy problem for the time-dependent hyperbolic system of crystal optics with polynomials entries is given. This method is based on symbolic computations of all Taylor coefficients for a solution of the Cauchy problem using the initial data and inhomogeneous term which have polynomial presentation with respect to space variables. Computing explicit formulae of solutions is implemented by Maple 10. A computational example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. International Science, New York (1962)

    MATH  Google Scholar 

  2. Haba, Z.: Green functions and propagation of waves in strongly inhomogeneous media. Journal of Physics A: Mathematical and General 37, 9295–9302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wijnands, F., et al.: Green’s functions for Maxwell’s equations: application to spontaneous emission. Optical and Quantum Electronics 29, 199–216 (1997)

    Article  Google Scholar 

  4. Li, L.W., et al.: Circular cylindrical waveguide filled with uniaxial anisotropic media-electromagnetic fields and dyadic Green’s functions. IEEE transactions on microwave and techniques 49(7), 1361–1364 (2001)

    Article  Google Scholar 

  5. Gottis, P.G., Kondylis, G.D.: Properties of the dyadic Green’s function for unbounded anisotropic medium. IEEE transactions on antennas and propagation 45, 154–161 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Ortner, N., Wagner, P.: Fundamental matrices of homogeneous hyperbolic system. Applications to crystal optics, elastodynamics, and piezoelectromagnetism. Z. Angew. Math. Mech. 84(5), 314–346 (2004)

    Article  MATH  Google Scholar 

  7. Burridge, R., Qian, J.: The fundamental solution of the time-dependent system of crystal optics. European J. Appl. Math. 17(1), 63–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yakhno, V.G.: Constructing Green’s function for the time-dependent Maxwell system in anisotropic dielectrics. Journal of Physics A: Mathematical and General 38(10), 2277–2287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yakhno, V.G., Yakhno, T.M., Kasap, M.: A novel approach for modelling and simulation of electromagnetic waves in anisotropic dielectrics. International Journal of Solids and Structures 43, 6261–6276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Monk, P.: Finite element methods for Maxwell’s equations. Clarendon Press, Oxford (2003)

    Book  MATH  Google Scholar 

  11. Cohen, G.C.: Higher-order numerical methods for transient wave equations. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  12. Zienkiewicz, O.C., Taylor, R.L.: Finite elements method 1. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  13. Cohen, G.C., Heikkola, E., Joly, P., Neittaan, M.P.: Mathematical and numerical aspects of waves propagation. Springer, Berlin (2003)

    Google Scholar 

  14. Werner, G.R., Cary, J.R.: A stable FDTD algorithm for non-diagonal, anisotropic dielectrics. Journal of Computational Physics 226, 1085–1101 (2007)

    Article  MATH  Google Scholar 

  15. Ikawa, M.: Hyperbolic partial differential equations and wave phenomena. Translations of Mathematical Monographs, vol. 189. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yakhno, V., Altunkaynak, M. (2009). Symbolic Computation of an Exact Solution of the Cauchy Problem for the System of Crystal Optics with Polynomial Data . In: Margenov, S., Vulkov, L.G., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2008. Lecture Notes in Computer Science, vol 5434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00464-3_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00464-3_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00463-6

  • Online ISBN: 978-3-642-00464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics