Advertisement

Perturbation Bounds for Certain Matrix Expressions and Numerical Solution of Matrix Equations

  • M. M. Konstantinov
  • P. Hr. Petkov
  • N. D. Christov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)

Abstract

The paper deals with the derivation of improved perturbation bounds for the matrix expression Open image in new window and their application to the sensitivity analysis and the solution of fractional–affine matrix equations. An estimate of the overall error in the solution of matrix equations is also given.

Keywords

Matrix Equation Compute Solution Matrix Expression Algebraic Riccati Equation Perturbation Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grebenikov, E., Ryabov, Y.: Constructive Methods for Analysis of Nonlinear Systems. Nauka, Moscow (1979) (in Russian)Google Scholar
  2. 2.
    Higham, N., Konstantinov, M., Mehrmann, V., Petkov, P.: The Sensitivity of Computational Control Problems. IEEE Control Syst. Magazine 24, 28–43 (2004)CrossRefGoogle Scholar
  3. 3.
    Konstantinov, M., Gu, D., Mehrmann, V., Petkov, P.: Perturbation Theory for Matrix Equations. Elsevier, Amsterdam (2003)zbMATHGoogle Scholar
  4. 4.
    Konstantinov, M., Petkov, P.: Note on Perturbation theory for algebaic Riccati equations (SIAM J. Matrix Anal. Appl. 19, 39–65, by J.G. Sun (1998)). SIAM J. Matrix Anal. Appl. 21, 327 (1999)Google Scholar
  5. 5.
    Konstantinov, M., Petkov, P., Gu, D.: Improved Perturbation Bounds for General Quadratic Matrix Equations. Numer. Funct. Anal. Opim. 20, 717–736 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Konstantinov, M., Stanislavova, M., Petkov, P.: Perturbation Bounds and Characterisation of the Solution of the Associated Algebraic Riccati Equation. Linear Algebra Appl. 285, 7–31 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lika, D., Ryabov, Y.: Iterative Methods and Lyapunov Majorant Equations in Non–Linear Osillation Theory. Shtiinca, Kishinev (in Russian) (1974)Google Scholar
  8. 8.
    Petkov, P., Christov, N., Konstantinov, M.: Computational Methods for Linear Control Problems. Prentice Hall, Hemel Hempstead (1991)zbMATHGoogle Scholar
  9. 9.
    Stewart, S., Sun, J.: Matrix Perturbation Theory. Academic Press, New York (1990)zbMATHGoogle Scholar
  10. 10.
    Sun, J.: Perturbation Theory for Algebraic Riccati Equations. SIAM J. Matrix Anal. Appl. 19, 39–65 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. M. Konstantinov
    • 1
  • P. Hr. Petkov
    • 2
  • N. D. Christov
    • 3
  1. 1.University of ArchitectureCivil Engineering and GeodesySofiaBulgaria
  2. 2.Technical University of SofiaSofiaBulgaria
  3. 3.Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance

Personalised recommendations