Finite Element Approximation of an Elliptic Boundary Value Problem with Interface

  • Boško S. Jovanović
  • Lubin G. Vulkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)


For elliptic boundary value problem in domain with smooth curvilinear boundary and interface a finite element approximation is constructed. Convergence is proved in Sobolev like spaces \(\widetilde W_2^1\) and \(\widetilde L_2\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babuska, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5, 207–213 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Advances in Comput. Math. 6, 109–138 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cao, Y., Gunzburger, M.: Least-squares finite element approximations to solutions of interface problems. SIAM J. Numer. Anal. 35, 393–405 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic problems. Numer. Math. 79, 175–202 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ciarlet, P.G.: The finite element method for elliptic problems. North–Holland, Amsterdam (1978)zbMATHGoogle Scholar
  6. 6.
    Jovanović, B.S., Vulkov, L.G.: Operator’s approach to the problems with concentrated factors. In: Vulkov, L.G., Waśniewski, J., Yalamov, P. (eds.) NAA 2000. LNCS, vol. 1988, pp. 439–450. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Jovanović, B.S., Vulkov, L.G.: On the convergence of finite difference schemes for the heat equation with concentrated capacity. Numer. Math. 89(4), 715–734 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jovanović, B.S., Vulkov, L.G.: On the convergence of difference schemes for hyperbolic problems with concentrated data. SIAM J. Numer. Anal. 41(2), 516–538 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jovanović, B.S., Vulkov, L.G.: Finite difference approximation of an elliptic interface problem with variable coefficients. In: Li, Z., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 46–55. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Huang, J., Zou, J.: Some new a priori estimates for second-order elliptic and parabolic interface problems. J. Differ. Equations 184, 570–586 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    LeVeque, R., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM. J. Numer. Anal. 31, 1019–1044 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, Z.: The immersed interface method using a finite elemet formulation. Appl. Numer. Math. 27, 253–267 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, Z.: An overview of the immersed interface method and its applications. Taiwanese Journal of Mathematics 7(1), 1–49 (2003)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Li, Z., Ito, K.: The Immersed Interface Method – Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM Frontier Series in Applied mathematics, FR33 (2006)Google Scholar
  15. 15.
    Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problem using finite element formulation. Numer. Math. 96, 61–98 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lions, J.L., Magenes, E.: Non homogeneous boundary value problems and applications. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lykov, A.V.: Heat and mass transfer. Energiya, Moscow (1978) (Russian)Google Scholar
  18. 18.
    Oganesyan, L. A., Rukhovets, L. A.: Variational-difference methods for solution of elliptic equations. Armenian AS, Erevan (1979) (Russian)Google Scholar
  19. 19.
    Riesz, F., Sz.-Nagy, B.: Leçons d’analyse fonctionelle. Akadémiai Kiadó, Budapest (1972)Google Scholar
  20. 20.
    Tikhonov, A. N., Samarskiĭ, A. A.: Equations of Mathematical Physics. GITTL, Moscow (1953) (Russian)Google Scholar
  21. 21.
    Vladimirov, V. S.: Equations of mathematical physics. Nauka, Moscow (1988) (Russian)Google Scholar
  22. 22.
    Vulkov, L.: Application of Steklov–type eigenvalues problems to convergence of difference schemes for parabolic and hyperbolic equation with dynamical boundary conditions. In: Vulkov, L.G., Yalamov, P., Waśniewski, J. (eds.) WNAA 1996. LNCS, vol. 1196, pp. 557–564. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Wloka, J.: Partial differential equations. Cambridge Univ. Press, Cambridge (1987)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Boško S. Jovanović
    • 1
  • Lubin G. Vulkov
    • 2
  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia
  2. 2.Center of Applied Mathematics and InformaticsUniversity of RousseRousseBulgaria

Personalised recommendations