Skip to main content

On a Discrete Maximum Principle for Linear FE Solutions of Elliptic Problems with a Nondiagonal Coefficient Matrix

  • Conference paper
Numerical Analysis and Its Applications (NAA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5434))

Included in the following conference series:

Abstract

In this paper we give a sufficient condition for the validity of a discrete maximum principle (DMP) for a class of elliptic problems of the second order with a nondiagonal coefficient matrix, solved by means of linear finite elements (FEs). Numerical tests are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55, 2227–2233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandts, J., Korotov, S., Křížek, M.: The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem. Linear Algebra Appl. 429, 2344–2357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandts, J., Korotov, S., Křížek, M., Šolc, J.: On nonobtuse simplicial partitions. SIAM Rev. (accepted)

    Google Scholar 

  4. Burman, E., Ern, A.: Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes. C. R. Math. Acad. Sci. Paris 338, 641–646 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2, 17–31 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fiebig-Wittmaack, M., Börsch-Supan, W.: Positivity preserving in difference schemes for the 2D diffusive transport of atmospheric gases. J. Comput. Phys. 115, 524–529 (1994)

    Article  MATH  Google Scholar 

  7. Horváth, R.: Sufficient conditions of the discrete maximum-minimum principle for parabolic problems on rectangular meshes. Comput. Math. Appl. 55, 2306–2317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karátson, J., Korotov, S.: Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions. Numer. Math. 99, 669–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karátson, J., Korotov, S., Křížek, M.: On discrete maximum principles for nonlinear elliptic problems. Math. Comput. Simulation 76, 99–108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Křížek, M.: There is no face-to-face partition of R5 into acute simplices. Discrete Comput. Geom. 36, 381–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuzmin, D.: On the design of algebraic flux correction schemes for quadratic finite elements. J. Comput. Appl. Math. 218, 79–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and quasilinear elliptic equations. Leon Ehrenpreis Academic Press, New York (1968)

    MATH  Google Scholar 

  13. Lamberton, D., Lapeyre, B.: Introduction to stochastic calculus applied to finance, 2nd edn. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  14. Li, J.Y.S.: Nonobtuse meshes with guaranteed angle bounds. Master Thesis, Simon Fraser Univ. (2006)

    Google Scholar 

  15. Liska, R., Shashkov, M.: Enforcing the discrete maximum principle for linear finite element solutions of elliptic problems. Commun. Comput. Phys. 3, 852–877 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227, 492–512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maehara, H.: Acute triangulations of polygons. European J. Combin. 23, 45–55 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mlacnik, M.J., Durlofsky, L.J.: Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients. J. Comput. Phys. 216, 337–361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Le Potier, C.: Schéme volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés. C. R. Acad. Sci. Paris I(341), 787–792 (2005)

    Article  MATH  Google Scholar 

  20. Varga, R.: Matrix Iterative Analysis. Prentice Hall, New Jersey (1962)

    Google Scholar 

  21. Vejchodský, T., Šolín, P.: Discrete maximum principle for higher-order finite elements in 1D. Math. Comp. 76, 1833–1846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korotov, S., Křížek, M., Šolc, J. (2009). On a Discrete Maximum Principle for Linear FE Solutions of Elliptic Problems with a Nondiagonal Coefficient Matrix. In: Margenov, S., Vulkov, L.G., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2008. Lecture Notes in Computer Science, vol 5434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00464-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00464-3_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00463-6

  • Online ISBN: 978-3-642-00464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics