Advertisement

On the Numerical Solution of a Transmission Eigenvalue Problem

  • S. Gegovska-Zajkova
  • Boško S. Jovanović
  • Irena M. Jovanović
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)

Abstract

A transmission eigenvalue problem in disjoint intervals is examined. Distribution of the eigenvalues is obtained. The corresponding difference scheme is proposed and tested on few numerical examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jovanović, B.S., Vulkov, L.G.: Numerical solution of a hyperbolic transmission problem. Comput. Method. Appl. Math. 8(4) (2008) (to appear)Google Scholar
  2. 2.
    Jovanović, B.S., Vulkov, L.G.: Finite difference approximation of strong solutions of a parabolic interface problem on disconected domains. Publ. Inst. Math. 83 (2008) (to appear) Google Scholar
  3. 3.
    Jovanović, B.S., Vulkov, L.G.: Formulation and analysis of parabolic interface problems on disjoint intervals (submitted)Google Scholar
  4. 4.
    Mikhlin, S.G.: Linear PDE. Vysshaya shkola, Moscow (1977) (Russian)Google Scholar
  5. 5.
    Renardy, M., Rogers, R.C.: An Introduction to PDE. Springer, Berlin (1993)zbMATHGoogle Scholar
  6. 6.
    Samarskiĭ, A.A.: Theory of Difference Schemes. Nauka, Moscow (1989) (Russian)Google Scholar
  7. 7.
    Vladimirov, V.S.: Equations of Math. Physics. Nauka, Moscow (1988) (Russian)Google Scholar
  8. 8.
    Vulkov, L.G.: Applications of Steklov-type eigenvalue problems to convergence of difference schemes for parabolic and hyperbolic equations with dynamical boundary conditions. In: Vulkov, L.G., Yalamov, P., Waśniewski, J. (eds.) WNAA 1996. LNCS, vol. 1196, pp. 557–564. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Vulkov, L.G.: Well posedness and a monotone iterative method for a nonlinear interface problem on disjoint intervals. Amer. Inst. Phys. Proc. Ser. 946 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Gegovska-Zajkova
    • 1
  • Boško S. Jovanović
    • 2
  • Irena M. Jovanović
    • 2
  1. 1.Faculty of Electrical Engineering and Information TechnologiesUniversity “St. St. Cyril and Methody”SkopjeMacedonia
  2. 2.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations