Advertisement

Numerical Experiments for Reaction-Diffusion Equations Using Exponential Integrators

  • Gabriel Dimitriu
  • Răzvan Ştefănescu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)

Abstract

In this study we focus on a comparative numerical approach of two reaction-diffusion models arising in biochemistry by using exponential integrators. The goal of exponential integrators is to treat exactly the linear part of the differential model and allow the remaining part of the integration to be integrated numerically using an explicit scheme. Numerical simulations including both the global error as a function of time step and error as a function of computational time are shown.

Keywords

Numerical Scheme Global Error Order Scheme Exponential Integrator Thomas Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berland, H., Skaflestad, B., Wright, W.: EXPINT – A Matlab package for exponential integrators. Numerics 4 (2005)Google Scholar
  2. 2.
    Butcher, J.C.: Numerical methods for ordinary differential equations. John Wiley & Sons, Chichester (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Celledoni, E., Marthinsen, A., Owren, B.: Commutator-free Lie group methods. FGCS 19(3), 341–352 (2003)CrossRefGoogle Scholar
  4. 4.
    Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comp. Phys. 176(2), 430–455 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)CrossRefzbMATHGoogle Scholar
  6. 6.
    Krogstad, S.: Generalized integrating factor methods for stiff PDEs. Journal of Computational Physics 203(1), 72–88 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lawson, D.J.: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4, 372–380 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Minchev, B., Wright, W.M.: A review of exponential integrators for semilinear problems. Technical Report 2, The Norwegian University of Science and Technology (2005)Google Scholar
  9. 9.
    Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. Applied Numerical Mathematics 29, 115–127 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Murray, J.D.: Mathematical Biology, 2nd edn. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    Nørsett, S.P.: An A-stable modification of the Adams-Bashforth methods. In: Conf. on Numerical solution of Differential Equations (Dundee, 1969), pp. 214–219. Springer, Berlin (1969)CrossRefGoogle Scholar
  12. 12.
    Thomas, D.: Artificial enzyme membrane, transport, memory and oscillatory phenomena. In: Thomas, D., Kervenez, J.-P. (eds.) Analysis and Control of Immobilised Enzyme Systems, pp. 115–150. Springer, Heidelberg (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gabriel Dimitriu
    • 1
  • Răzvan Ştefănescu
    • 1
  1. 1.Department of Mathematics and InformaticsUniversity of Medicine and Pharmacy “Gr. T. Popa”IaşiRomania

Personalised recommendations