Advertisement

Stability and Bifurcation of the Magnetic Flux Bound States in Stacked Josephson Junctions

  • Ivan Christov
  • Stefka Dimova
  • Todor Boyadjiev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)

Abstract

The static distributions of the magnetic flux in stacked Josephson junctions are investigated numerically. To solve the nonlinear boundary value problem an iterative algorithm, based on the Continuous analog of Newton method is constructed. The linearized problems at every iteration step are solved by the Galerkin finite element method. In order to study the stability of possible distributions a Sturm-Liouville problem is generated. A minimal eigenvalue equal to zero means a bifurcation of the corresponding solution. The subspace iteration method is used to find the smallest eigenvalues and the corresponding eigenvectors.

Keywords

External Magnetic Field Magnetic Flux Josephson Junction Coupling Energy Bifurcation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volkov, A.F.: Solitons in Josephson superlaticess. JETP Lett. 45(6), 299–301 (1987)Google Scholar
  2. 2.
    Boyadjiev, T.L., Pavlov, D.V., Puzynin, I.V.: Computation of Bifurcations of Stable States in Two-Layer Inhomogeneous Josephson Junctions. Comm. JINR, Dubna, P5-89-173 (1989)Google Scholar
  3. 3.
    Sakai, S., Bodin, P., Pedersen, N.F.: Fluxons in thin-film superconductor-insulator superlattices. J. Appl. Phys. 73(5), 2411–2418 (1993)CrossRefGoogle Scholar
  4. 4.
    Nevirkovets, I.P., Evetts, J.E., Blamire, M.G.: Transition From Single Junction to Double Junction Behavior In Sisis- Type Nb-Based Devices. Phys. Lett. A 187(1), 119 (1994)CrossRefGoogle Scholar
  5. 5.
    Bulaevskii, L.N., Zamora, M., Baeriswyl, D., Beck, H., Clem, J.R.: Time-dependent equations for phase differences and a collective mode in Josephson-coupled layered superconductors. Phys. Rev. B 50, 12831–12834 (1994)CrossRefGoogle Scholar
  6. 6.
    Kleiner, R., Muller, P., Kohlstedt, H., Pedersen, N.F., Sakai, S.: Phys. Rev. B  50, 3942–3952 (1994)Google Scholar
  7. 7.
    Song, S.N., Auvil, P.R., Ulmer, M., Ketterson, J.B.: Vortex structure and Josephson supercurrent in stacked double Josephson junctions. Phys. Rev. B 53(10), R6018 (1996)CrossRefGoogle Scholar
  8. 8.
    Krasnov, V.M., Winkler, D.: Static and dynamic properties of stacked Josephson junctions: Analytic solution. Phys. Rev. B 56, 9106–9115 (1997)CrossRefGoogle Scholar
  9. 9.
    Goldobin, E., Ustinov, A.V.: Current locking in magnetically coupled long Josephson junctions. Phys. Rev. B 59(17), 11532–11538 (1999)CrossRefGoogle Scholar
  10. 10.
    Atanasova, P.K., Bojadjiev, T.L., Dimova, S.N.: Numerical Simulation of Critical Dependences for Symmetric Two-Layered Josephson Junctions. Computational Mathematics and Mathematical Physics 46(4), 666–679 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Machida, M., Sakai, S.: Unifed theory for magnetic and electric field coupling in multistacked Josephson junctions. PRB 70, 144520 (2004)CrossRefGoogle Scholar
  12. 12.
    Licharev, K.K.: Dynamics of Josephson Junctions and Circuits. Gordon and Breach, New York (1986)Google Scholar
  13. 13.
    Gal’pern, Y.S., Filippov, A.T.: Bound states of solitons in inhomogeneous Josephson junctions. Sov. Phys. JETP 59 (1984)Google Scholar
  14. 14.
    Thomee, V.: Galerkin finite element method for parabolic problems. Spinger, Berlin (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Puzynin, I.V., et al.: Methods of computational physics for investigation of models of complex physical systems. Particals & Nucley 38(1) (2007)Google Scholar
  16. 16.
    Bathe, K.J., Wilson, E.: Numerical Methods in Finite Element Analisis. Prentice Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  17. 17.
    Rubinstein, J.: Sine-Gordon equation. J. Math. Phys. 16(96) (1970)Google Scholar
  18. 18.
    Fogel, M.B., et al.: Dinamics of sine-Gordon solitons in the presence of perturbations. Phys. Rev. B 15(3) (1977)Google Scholar
  19. 19.
    Iliev, I.D., Khristov, E.K., Kirchev, K.P.: Spectral methods in soliton equations. Longman Sci. & Techn. Wiley (1994) Google Scholar
  20. 20.
    Naimark, M.A.: Linear differential operators. Nauka, Moskow (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ivan Christov
    • 1
  • Stefka Dimova
    • 1
  • Todor Boyadjiev
    • 1
  1. 1.Faculty of Mathematics and InfromaticsUniversity of SofiaSofiaBulgaria

Personalised recommendations